SANDIA REPORT

SAND2017-3777
Unlimited Release
Printed April 13, 2017

SIERRA Code Coupling Module:
Arpeggio
User Manual — Version 4.44

Samuel R. Subia, James R. Overfelt, David G. Baur

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2017-3777
Unlimited Release
Printed April 13, 2017

SIERRA Code Coupling Module: Arpeggio
User Manual — Version 4.44

Samuel R. Subia, James R. Overfelt, David G. Baur
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysics scenarios.
The code suite is composed of several specialized applications which can operate either in standalone mode
or coupled with each other. Arpeggio is a supported utility that enables loose coupling of the various
Sierra Mechanics applications by providing access to Framework services that facilitate the coupling. More
importantly Arpeggio orchestrates the execution of applications that participate in the coupling. This
document describes the various components of Arpeggio and their operability. The intent of the document
is to provide a fast path for analysts interested in coupled applications via simple examples of its usage.

Contents

Contents
List of Figures

1 Introduction

1.1 Coupled Physics Approaches e

1.2 Sierra Mechanics Coupling
1.3 Communication of Data (Transfer Services)
1.4 Solution Control
1.5 Coupling Strategies
1.6 Coupling with Arpeggio
1.7 Outline of the Manual

Getting Started

2.1 Setting The Environment-Users External to Sandia Labs
2.2 Setting The Environment-Users at Sandia Labs i i,
2.3 Running ATpeggioo .v i
2.4 Arpeggio Environment OVErviewttt
2.5 Overview of the Input File Structure. i
2.6 Fields ... o
2.7 User Fieldso

Model Definition

3.1 Model OVEIVIEW . . .ottt
3.2 Finite Element Model
3.3 Parameters For Block
3.4 Global Constants e
3.5 Definition For Function.
3.6 Values . ..o

10
11
11
12
14

15

17
17
17
17
18
19
23

24

25

3.7 Restart Overview .

4 Solution Control Reference
4.1 OVEIVIEW .« o ottt e e
4.2 Solution Control Description
4.3 SYSeIM
4.4 Transient
4.5 NONINEAT .« . . ottt
4.6 SuUbCyCle . .o
4.7 Sequential.o
4.8 Initializeo
4.9 Parameters For

5 Transfer Reference

5.1 (0 23 A T P

5.2 Transfer . . oo
6 Input Output Region Reference

6.1 Input_Output Region OVerviewttt e

6.2 Input_Output Region
7 Examples

7.1 One-Way Coupling From File. e

7.2 One-Way Coupling Using Transfer From Different Mesh

7.3 One-Way Coupling Using Transfer. e

7.4 Two-Way Coupling With Transfer. e

7.5 estack Regression Test

7.6 tv Regression Test

References

Index

43
43
47
48
92
95
99
62
65
66

75
(0]
79

87
87
88

93
93
94
95
95
96
96

97

99

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1

5.1
5.2

Loose Coupling Schematic (Z Scheme). e 10
Sierra Mechanics Data Types. e 11
One-way Loose Coupling At Same Time Step.t 13
Deferred One-way Loose Coupling At Same Time Step.. 13
One-way Loose Coupling with Subcycling Schematic. 14
Two-way Loose Coupling Schematic.« e 14
Thermal-Mechanical With Thermal One-Way Element Death. 15
Thermal-Mechanical With Two-Way Element Death. 15
Schematic UML class diagram for the Expression subsystem. 18
Valid Transfer Operations e 76
Invalid Transfer Operation e 7

Chapter 1

Introduction

The SNL Sierra Mechanics code suite is designed to enable numerical simulations of complex multi-physics
scenarios. The code suite is composed of specialized applications which can operate either in standalone
mode or in a coupled mode with other Sierra Mechanics applications. Arpeggio is a supported utility that
enables loose coupling of the various Sierra Mechanics applications by providing access to Framework services
that facilitate application coupling. Utilizing these services Arpeggio is able orchestrate the execution of
applications that participate in code coupling. This document describes the Framework services used by
Arpeggio for coupling and the inter-operability of these services for coupling of Sierra SM and Sierra TF
applications. Through the use of simple examples, the document also provides a resource for analysts
interested performing in coupled-physics simulations.

1.1 Coupled Physics Approaches

When modelling tightly-coupled physics, the numerical representation of all PDEs within a region of interest
are often combined a single system matrix and solved using a nonlinear solution strategy specific to the
application. This approach to solving coupled-physics problems is available for a limited set of physics in the
Sierra Mechanics TF module. Relaxing the notion of tight-coupling one could alternatively obtain solutions
for each of the physics independently and patch the individual solutions together in some prescribed manner,
this is the essence of loosely-coupled physics simulations.

The numerical analysis community has long recognized the need to include results from various physics
in a single simulation. However, the fact that most application codes are often developed around single
physics often limits the extent to which coupled-physics simulations can be achieved. FEarly approaches
to coupled-physics simulations often simplified the coupling by level of importance by assigning primary
physics and secondary physics roles. Here the primary physics depended upon secondary physics and the
dependence of secondary physics upon primary physics was deemed less important. Under this assumption
coupled physics simulations can be realized by first performing independent simulations of the secondary
physics followed by a simulation of the primary physics utilizing results of the initial simulation. Figure
1.1 illustrates the coupling approach for a quasi-static solution step from a state ¢,, to state t,41. Broadly
speaking, loose-coupling strategies are classified as Z-methods, since a Z describes the basic pattern of data
communication between the physics applications. The one-way view of loosely-coupled physics lends itself to
file-based approaches where single state results are obtained on a common spatially meshed discretization.
Here the problem solutions are generally obtained at cell vertices (nodes) or cell centers (elements). Quite
often each physics simulation lends itself to a particular spatial discretization and this gave rise to the
introduction of an intermediate mapping step whereby the secondary physics results were mapped onto the
primary physics discretization as in the MAPVAR utility [1]. For transient coupled-physics simulations best
results are obtained when sharing a common time discretization but in many cases this is impractical and
the coupling is based upon closest-time matched solutions or interpolations of solutions in time.

th th+1

At
Secondary Physics }—»{

Primary Physics ——

Figure 1.1. Loose Coupling Schematic (Z Scheme).

1.2 Sierra Mechanics Coupling

Sierra Mechanics physics applications deal with solving PDEs on a physical geometric domain, a Region. In
defining a coupled physics problem, users configure one or more Regions corresponding to some particular
physics. Each Region considers one or more PDEs to be solved on either the entire input mesh or on a
portion of the mesh. When the Region physics are coupled one can elect whether to solve the physics in
a tightly-coupled manner in a single application or by loosely coupling individual Region results. Here we
note that for loose coupling the physical geometry and spatial discretization must overlap but need not be
identical in each of the participating Regions.

In the context of Sierra Mechanics, loosely-coupled physics nonlinear solutions are obtained on each of
the Regions and then combined to form an overall coupled solution. Not surprisingly there are numerous
ways one can approach loose-coupling since different strategies are appropriate to different problem sets.
That is, the solution for one Region may depend strongly upon the solution in another Region but not vice-
versa (one-way coupled), or the the solution for each Region may depend upon the solution the other Region
(two-way coupling). The goal of Sierra Mechanics is to provide services which enable one to easily perform
variants of a multi-physics coupling.

Some considerations which are relevant to the loose-coupling solution strategies include

e Communication of data from one Region to another Region (Transfer),

e Initialization of the individual Regions,

Solution for the individual Regions (Advance),

Time stepping or pseudo-time stepping for the individual Regions,

Time synchronization of participating Regions,

Conditional convergence,

Drive mesh adaptivity,

Sequencing for all of the above.

Within Sierra Mechanics communication of data between application Regions is handled by the Framework
Transfer service and all aspects of solution behavior are managed by another Framework service, Solution
Control. Mesh Adaptivity is managed through the Percept library.

10

1.3 Communication of Data (Transfer Services)

In Sierra Mechanics application data is generally associated with nodes, elements, faces or edges of a meshed
discretization as shown in Figure 1.2. A loose-coupling between applications implies the dependence of one
application on data supplied from some external source. Since the physical location of data on the external
source may or may not map geometrically onto the the other application solution, provisions must be made
to perform this data mapping in a flexible manner. It is important to note that these mappings can be
accomplished both for the case of different mesh and different element types. Within Sierra Mechanics this
responsibility is handled by Framework Transfer services. Here it is important to note that Framework
Transfer services enable the external source data to include element, face and edge data as well as nodal
data.

Node Element Face Edge

Figure 1.2. Sierra Mechanics Data Types.

1.4 Solution Control

The Solution Control subsystem controls the execution of coupled multi-physics applications. Solution
control provides two basic operations for controlling the solution of a multi-physics system by defining the
order for object execution and by setting parametric values on the controlled objects at the proper time. For
transient problems this approach enables the applications to easily transition through the designated time
periods. The same system can also service steady-state simulations by treating them in a sequential manner.
The solution controllers are able to initialize Region data, set parameter values, advance Regions, execute
transfers, call events and send notifications based on the input file specifications.

1.4.1 Region Initialization

When beginning execution, all applications require some baseline initialization operations at the Region level.
When performing some loose-coupling simulations the dependence of data may may require that initialization
of data be performed in some specific manner. Here the manner in which initialization occurs is determined by
how the application solution variables are defined and the application code implementation of initialization.
As an example for a thermal-mechanical coupling one might initialize the reference temperature state in the
solid before any temperature change in the solid were allowed to occur. Solution Control provides a means
for performing various types of non-standard data initialization.

1.4.2 Solution

Each set of coupled physics represents a System of equations which must be solved. While participating in
loose-coupling an application physics will attempt to advance its solution to a later state. In the parlance

11

of Solution Control this step is known as an advance event. Here the details of code operations associated
with advancing the solution are controlled entirely by the physics application. Additionally, because the
advance can occur conditionally it provides flexibility in how the coupling is performed.

1.4.3 Time Stepping

Within Sierra Mechanics each application is allowed to define its own notion of solution time. The Solution
Control time step controller probes the individual application solution time and uses that information to
determine how time should be advanced for the coupled physics. For couplings of transient simulations with
quasi-static applications, the time step controller manages a unified notion of pseudo-time and physical time
seamlessly, even when the time step selection is adaptive.

1.4.4 Conditional Events

In loosely-coupled simulations the need often arises to perform some high level operations conditionally.
Here Solution Control is able to probe the application for current states or variables to determine whether
whether some coupling action should occur. These conditionals can be applied to both the data transfer or
advance Solution Control events. Examples of conditional events are included in Chapter 4.

1.5 Coupling Strategies

Using the Solution Control one can easily define loose couplings between two or more Regions. For example,
some or all of a solution from one Region may be transferred to another Region where it is treated as
a constant, external field. The aggregate nonlinear problem including the contributions from all of the
Regions may be iterated to convergence. The details of which physics are solved in each Region and the
nonlinear solution strategy used within and between Regions is completely specified through the input file.
Furthermore, a Sierra Mechanics user may pick a simple, minimal algorithm without needing to fit it into
an overly-generalized worst-case scenario that represents the union of all possible algorithms.

Dynamically-specified loose coupling has many potential advantages that users may leverage to obtain
solutions. First, the resulting linear system is considerably smaller than a fully-coupled system and con-
tains far fewer off-diagonal contributions which can significantly improve the performance of linear solvers.
Furthermore the resulting linear system may have a more desirable mathematical properties, such as being
symmetric positive-definite, this permits the use of tailored iterative solutions techniques. Other extensions
to loose coupling include subcycling of transient simulations where each Region may advance in time with
its own time step size and in-core coupling to other applications based upon the Sierra framework.

The simplest loose-coupling strategy is a one-way coupling between two applications, App I and App II,
is shown schematically in Figure 1.3. Here it is assumed that information (data) from App I is needed by
App IT but App I is independent (decoupled) from App II. Furthermore it is assumed that the applications
can proceed at the same time step. In this case the solution for each application can proceed in locked step.

A variant of the simplest loose-coupling would be the case where the dependence of App II solutions
on App I data is such that update of the App I data can be deferred for several steps. This type coupling
behavior can be enforced using a conditional advance event in Solution Control. As an example, a data
transfer event defined for every two time steps of each application is shown schematically in Figure 1.4.

In some couplings the temporal response of one application physics, App I, is much faster than that of

12

tn th+1 th+2 t
At At oA

App I > > -

7 7 7
7 7 7
7 7 e
7 7 7

transfer ---------- - PR Al Al

7 7 7
7 7 7
7 7 7
7 7 7
7 7 7

Appll Pt

Figure 1.3. One-way Loose Coupling At Same Time Step.

th th+l th+2 t
At At T oap
App 1 }—»}—»{—»{ »

transfer .- O

AppIl P~

Figure 1.4. Deferred One-way Loose Coupling At Same Time Step.

another physics, App II. Here one may wish to advance the App I physics many time steps before requiring
an update of its contribution to the App II information, Figure 1.5. Here Solution Control provides a facility
denoted as subcycling to invoke this behavior.

When the coupling between App I and App II is circular in nature, (i.e. App I solutions depend upon
App IT and vice versa) the coupling can be achieved by adding an additional Transfer step to the one-way
coupling approach. However, if the coupling dependency is fairly strong it may be prudent to ascertain a
converged solution between the physics models before advancing to the solution step. Here the conditional
event aspect of Solution Control can be employed to iterate App I and App IT until a solution of the desired
quality is obtained. The strategy is depicted in Figure 1.6 and is supported as the Nonlinear option within
Solution Control.

13

1 I 1
Appl - - -
transfer ----------- /—/-’- --------------- ---------
App I I;ﬁ;ﬁ;ﬁ
AtH AtH AtH

Figure 1.5. One-way Loose Coupling with Subcycling Schematic.

g Il g 2yt

App > > -

| . . .
transfer ---......... T PR Lo AT

| s s s
’ I ’ I ’ I
s) s) ’
I 7 / 7
s s ’

App I

Figure 1.6. Two-way Loose Coupling Schematic.

1.6 Coupling with Arpeggio

While the previous sections have described the component utilities needed to enable coupled physics simula-
tions but little has been said of existing tools composed of these utilities. Previous efforts in the development
of Sierra Mechanics focused upon thermal-mechanical coupling of the Calore and Adagio applications with
the Calagio utility to analyze problems of thermal stress. Here Sierra Mechanics utilities were used to solve
the temperature state, then initializing the reference temperature state in Adagio followed by subsequent
solves and transfer of the temperature state to Adagio to obtain a thermal stress state in the deformed
configuration. Within the Calagio utility extra efforts were made to obscure the use of Framework utilities
lying outside the realm of Calore and Adagio. Early one-way coupling efforts were later followed by two-way
couplings where the deformed configuration was communicated to Calore and the heat transfer problem
could be solved in the updated geometry. Although couplings with Calagio were largely successful it was
recognized that incremental improvements in coupling capability came with a high price in terms of code
development effort both to alter the predefined coupling strategies and to hide the underlying implemen-
tation from the analyst within the application code. Moreover, the predefined coupling strategy approach
prevented the analyst from fully exploiting the resources available within Sierra Mechanics and the appli-
cations themselves. These shortcomings provided a motivation for creation of the Arpeggio utility in which
the analyst fully specifies details of the coupling strategy.

14

1.6.1 Coupling Including Element Death

Coupling strategies in predecessors of Arpeggio precluded the possibility of simulations that required syn-
cronization of the meshed discretization such as element death. Here the transfer capability in conjunction
with a consistent notion of an application code indicator of element death (Death_Status) enables coupled
simulations that include element death. Prevalent uses of this capability are one-way coupled thermal-
mechanical simulations with thermally-driven element death 1.7 and two-way coupled thermal-mechanical
simulations with element death driven by either application 1.8. For both types of coupling the mechanical
code behavior is essentially the same as for a two-way coupling. On the other hand, in the case of two-way
coupling the one-way coupling thermal invocation of a death criteria test is altered by the addition of an
Aria Region level command line: Transfer Element Death.

Thermal Mechanical
Jacobian Test Temperature Elem Death Test
Solve Nonlinear m:s — Death_Status
Elem Death Test - Jacobian Test

- Thermal Criteria Solve Nonlinear

Figure 1.7. Thermal-Mechanical With Thermal One-Way Element

Death.
Mechanical
Thermal Temperature Elem Death Test
Elem Death Test - - Death_Status
— Death_Status — Temperature Criteria
Jacobian Test Death_Status Jacobian Test
. -~ Solve Nonlinear
Solve Nonlinear Displacement Elem Death Test
— Structural Criteria

Figure 1.8. Thermal-Mechanical With Two-Way Element Death.

1.7 Outline of the Manual

Chapter 2 discusses the overall Sierra Mechanics environment for running Arpeggio, including the layout
for the Arpeggio input file. Sierra Mechanics users familiar with the overall environment need only browse
the input file structure and move directly to the sections describing Framework Transfer 5 and Solution
Control 3.7. Experienced Sierra Mechanics users may opt to move directly to examples of coupling in
Chapter 7

15

16

Chapter 2

Getting Started

2.1 Setting The Environment-Users External to Sandia Labs

To access Sierra/Arpeggio one will likely need to setup the user environment. This setup will differ upon
location and the local system administrator can provide information on setting up your local environment.

2.2 Setting The Environment-Users at Sandia Labs

The environment for using Arpeggio is the same as for individual Sierra applications and can be configured
by module files. The modules ensure that the look and feel of running Sierra applications is the same across
a multitude of compute platforms. To obtain the proper environment for code execution one simply runs:

% module load sierra

2.3 Running Arpeggio

This section includes some very simple examples of how to run Arpeggio. For more information on running
on some of Sandia’s clusters, etc. see [2].

In its simplest form, Arpeggio can be run like this:
% sierra arpeggio -i myrun.i

In this example, myrun. i is the Arpeggio input file. The output — nonlinear iterations, time step information,
etc. — will be written to a file called myrun.log. So, you can monitor the progress of the simulation by
watching the log file. Alternatively, you can have all of the output sent to the display by using the -1
logfile command line option. If you set the log file to be - (a single “minus” character) all of the output
will be sent to the standard output (usually your display):

% sierra arpeggio -i myrun.i -1 -

If you would like to use aprepro in your input file, add the —a command line option to have your input file
automatically processed:

% sierra arpeggio -i myrun.i -1 - -a

17

Parallel
Synchronous

Figure 2.1. Schematic UML class diagram for the Expression subsys-
tem.

Oftentimes we want to run Arpeggio remotely or locally in a batch mode, save any standard output and
perhaps even logout from a session. Unfortunately, termination of the session through either voluntary
(interactive) or involuntary (timeout) logout may in effect terminate the Arpeggio job. In this case one
can prevent the job from terminating by using the Unix nohup command in conjunction with the standard
execution command line.

% mnohup sierra arpeggio -i myrun.i -1 YourLogFile -a

If one wishes to run the job in a background mode the nohup command should be terminated with & at the
end of the command line.

2.4 Arpeggio Environment Overview

The Sierra Mechanics code suite is composed of several specialized applications which can operate either in
standalone mode or coupled with each other. The various application models and algorithms are integrated
into the Sierra framework through the architecture illustrated in Figure 2.1. A Sierra-based application has
four layers of code: Domain, Procedure, Region, and Model/Algorithm.

The outermost layer of an application is the Domain, or “main” program of the application. This domain
layer is implemented by the Sierra Framework to manage the startup/shutdown of an application, and to
orchestrate the execution of an application-proved set of procedures.

Code at the Procedure level is responsible for evolving one or more loosely coupled set of physics through a
sequence of steps. This sequence may be a set of time steps, nonlinear solver iterations, or some combinations

18

of these or other types of steps.

An application mauy define multiple procedures to implement hand-off coupling between physics within
the same main program. In hand-off coupling the first (or preceding) procedure completes execution, mesh
and field data is transferred to a succeeding procedure, and the succeeding procedure continues the simulation
with a different set of physics. For example, the first thermal procedure could calculate a temperature
distribution inside a differentially heated fluid, and the second procedure could simulate natural convection
of the fluid due to the density gradients set up by the resulting temperature field.

Code at the Region level is responsible for evolving a tightly coupled set of physics throug a single step.
Loose coupling of Regions is supported by the advanced transfer services provided by the Sierra framework.

Each Region owns (1) a set of models or algorithms that implement its tightly coupled set of physics and
solvers and (2) an in-memory parallel distributed mesh and field database. This mesh and field data is fully
distributed among parallel processors via domain decomposition.

2.5 Overview of the Input File Structure

An Arpeggio model is described by commands contained in an ASCII input file. The structure of the input
file follows a nested hierarchy. The topmost level of this hierarchy is named the domain. Below the domain
lies a level named procedure, followed by the region level as depicted in Figure 2.1.

The domain level contains one or more procedures. At the domain level, one will also find commands
associated with describing the finite element mesh, the linear solver set-up, material properties associated
with a defined material, and user functions associated with source terms and boundary conditions that are
added into Arpeggio’s intrinsic set of functions.

The procedure level contains one or more regions. The procedure level is also used to specify the time
stepping parameters, and interactions between regions, such as data transfers. Essentially at the procedure
level, loose coupling algorithms are specified. Loose coupling here is defined within the context of Arpeggio’s
implicitly full-coupled paradigm. Whenever an independent variables’s interaction with other variables in
the solution procedure is not fully represented in the global matrix, the algorithm for loose coupling of that
variable and its associated equation will be described at the procedure level. This loose coupling algorithm
is known as a “solution control description”. The procedure level contains a command block specifying the
solution control procedure. An analogy to this block in simpler codes would be top level loop. For example
in time dependent applications, the solution control description block would involve a block to solve the time
dependent problem repeated for each time step until the desired solution time is reached.

The Region level is used to specify details about the physics to be solved. Details related to the solve
include boundary conditions and initial conditions, where materials models are applied, and where surface
and volumetric source terms are applied. Here the meshed discretization and material properties described
at the domain level are tied into the problem statement by virtue of their names.

Global constraint equations are also specified at the region level. At the region level, specification of
information written to the output file and the frequency at which output occurs. Additional post-processing
associated with the output is specified. For example, additional volumetric fields which are functions of the
independent variables may be specified to be added to the output file.

There are two types of commands in the input file. The first type is referred to as a block command.
A block command is a grouping mechanism. A block command contains a set of commands made up of
other block commands and line commands. A line command is the second type of command. The domain,
procedure, and region levels are all parsed as block commands. A block command is defined in the input file
by a matching pair of Begin and End lines. For example,

19

Begin SIERRA myJob
. block commands
End SIERRA myJob

A set of key words for the block command follows the “Begin” and “End” keywords. In most cases a
user-specified name is added to the block commands. In the example above the keywords, STERRA myJob,
are added. Optionally, the keyword may be left off of the end of the block.

The second type of command is the line command. A line command is used to specify parameters within
a given block command. In the remaining chapters and sections of this manual, the scope of each block and
line command is identified, along with summaries of the meanings. Note that the ordering of any commands
within a command block is arbitrary. Thus,

Begin Finite Element model fluid
Database name is pipeflow2d.g
Use Material water for block_1

End Finite Element model fluid

will have the same effect as

Begin Finite Element model fluid
Use Material water for block_1
Database name is pipeflow2d.g

End Finite Element model fluid

And the ordering of command blocks within the domain/procedure/region blocks are arbitrary—allowing
you conderable freedom to collect and arrange commands. Note that the terms “command block” and “block
command” are interchangeable.

The Sierra command block must contain a block for a procedure containing at least one Region. For a
case where only an Aria Region is being used:

Begin procedure myProcedureName
Begin Aria region myRegionName

End Aria region myRegionName
End procedure myProcedure

and similarly for a case using both Aria and Adagio Regions:

Begin procedure myProcedureName
]:%egin Adagio region myAdagioRegionName
E1'1d Adagio region myAdagioRegionName
I‘Begin Aria region myAriaRegionName

End Aria region myAriaRegionName
End procedure myProcedure

20

The procedure command block is used to contain all of the application code commands that are associated
with a solution procedure defined for a set of Regions. The myProcedureName and name keywords of the
procedure and region blocks are left up to you. Note that the procedure command block must be present
in the input file and must contain at least one application code Region command block. The procedure
command block also contains other important command blocks such as the SOLUTION CONTROL block.

2.5.1 Syntax Conventions for Commands

In this section we describe the conventions used in presenting all the command descriptions in the remainder
of this manual. There are four basic kinds of tokens, or words, that an application code expects to find as
it parses an input file. These are keywords, names, parameters and delimiters.

Keywords

The words which distinguish one block command, or line command, from another we term keywords. Key-
words are denoted in this manual in the monospaced font, for example, BOUNDARY CONDITION.

Names

The word, or words, that you supply on the same line of the begin line of a block command, is the name.
Many times you may need to supply this name as a character parameter in a separate line command. Names
are denoted in italics, name , as are parameters.

It is worth noting that the interpreter used to process standard input command lines is also used to process
lines defining algebraic operations. This means that a ”-” appearing within a name would be interpreted as
a subtraction operation and as a consequence, the use of ”-” within a name is not allowed. Thus instead of

Begin Adagio region name-1
one could perhaps use

Begin Adagio region name_1.

Parameters
There are three types of input parameters one will need to supply to line commands: character strings,
integers, and real numbers. These are denoted in the documentation as (C), (R), and (I), respectively.

In most cases character strings may be specified in a free format. One exception to this paradigm is
when a string begins a number. In this case the character string must be specified within quotation marks
in order to be properly interpreted.

Real numbers may be entered in decimal form or exponential form. For example 0.0001, .1E-3, 10.0d-5
are all equivalent. Furthermore, if a real(R) is expected, an integer can be used.

Integer values (I) need not include a decimal point in their specification.

21

Multiple Parameters

For the case when a list of one or more paremeters is allowed, or required, for a command, (C,...) denotes a list
of character strings, (I,...) a list of integers, and (R, ...) a list of real numbers. For a list of character strings,
the separator between the strings must be one or more spaces or tab characters. Therefore, phrases with
multiple spaces and words in them are tokenized into multiple character parameters before being processed
by the application. For a list of real or integer numbers the comma can also be used as a separator.

Enumerated Parameters

Certain commands have predefined parameters, called enumerations, which are listed within {}. Each
parameter in the list is separated using | . The default parameter for the list of parameters is enclosed by
<>.

Delimiters

The keywords of a line command are often required to be separated from the parameters by a delimiter.
You have a choice of delimiters to use: the equal sign, =, or a word. In this manual, we denote the choices
surrounded by {}, and separated by |. You may use any one of the delimiters from those listed. For example,
the line command to specify the density within the Calore Material Block command is

Density {=|IS} (R)

Examples of valid forms you could write in the input file are

Begin Property Specification for Calore Material water
Density = 1.0E-3 # kg/m\"3 at 20C

End
and

Begin Aria Material water
Density is constant rho = 1.0E-3 # kg/m\"3 at 20C

End

White Space

Command keywords, names, and parameters and delimiters must have spaces around them.

Indentation

All leading spaces and/or tab characters are ignored in the input file. Of course, we recommend that you
use indentation to improve the readability for yourself and others that may need to see your files.

22

Case Sensitivity

None of the command keywords, parameters, or delimiters read from the input file are case sensitive. For
example, the following two lines are equivalent:

Use Material water for block_1

and
USE material wATer for blOCK_1

The exception to this rule are file names used for input and output, because the current operating systems
on which STIERRA applications are run are based on UNIX, where file names are case sensitive.

Comments and Line Continuation

You may place comments in the input file starting with either the $ or # character. All further characters
on a line following a comment character are ignored.

You can continue a command in the input file to the next line by using the line continuation character
$, or you may optionally following it with a comment#. All further characters on the same line following
a line continuation character $ are ignored, and the characters on the following line are joined and parsing
continues. An example is the line command used to specify the title of a thermal model:

Begin SIERRA Job_Indentifier
This thermal model for Calore simulates a convective heat transfer

Title The title command is used to set the analysis title $\
Convective heat transfer to a part. The analysis $\
makes use of conjugate heat transfer to account for $\
cooling of a part due to flowing water.

End SIERRA Job_Indentifier

Checking the Syntax

Errors in the input deck can be checked by adding the command, “—check-syntax” to the aria command line.
For example,

sierra arpeggio --check-syntax -i input.i

This command will print the code echo of the input deck and any syntax errors within it to the display.

2.6 Fields

Fields are defined as variables which are distributed on mesh objects (e.g. nodes, elements, faces or edges).
The mesh object and Field data may be distribued among parallel processors via a domain decomposition

23

algorithm. Each application registers Fields by name on its own Region. In a coupled-physics simulation
Framework transfer services may be called on to communicate these Fields to another application. For
example, the temperature Field in one application may be communicated to a solid mechanics application
in order to perform a thermal-stress analysis.

2.7 User Fields

Situations often arise where one wishes to provide Field data storage so that data can be transferred into or
out of the application. Each of the application codes provide some mechanism for enabling this type of data
access. Additionally, User Fields are often used to as additional storage needed in user supplied subroutines.

24

Chapter 3

Model Definition

3.1 Model Overview

Sierra Framework services provide overall control of input commands, discretization input data and output
data, 10. Additionally they provide a directed interaction of Framework services at the so-called Domain
level with with the application code at the Region level. This controlled interaction is enabled by commands
that follow.

The model discretization (mesh) and the mesh components to be used in the model are defined at the
Domain level and are later referenced by the application at the Region level. The association of material
properties with portions of the mesh are also defined here within the Finite Element Model command block/s.
For some couplings using the same mesh a single Finite Element Model may be used but for most cases one
will use separate Finite Element Model command blocks for each Region. A sample outline of a setup for
coupling of a solid mechanics application sm and a thermal-fluid tf is shown below.

Begin Sierra myJob
éegin Finite Element Model my_fem_model_sm
Fnd
éegin Finite Element Model my_fem_model_tf
Eﬁd
Begin Global Constants
Eﬁd
Model definition commands
- Material definitions for sm
- Function definitions for sm
- Local Coordinate Systems for sm
- Material definitions for tf

- Function definitions for tf
- Local Coordinate Systems for tf

25

Begin Procedure My_Procedure
érocedural commands
- Solution Control Description
- Transfer operations
éegin Adagio Region My_Adagio_Region
ﬁse Finite Element Model my_fem_model_sm
- sm Region level commands
Fnd
éegin Aria Region My_Aria_Region
ﬁse Finite Element Model my_fem_model_tf
; tf Region level commands
Eﬁd
End.

End Sierra myJob

Note that a given application may not support the entire set of available options available in the Finite
Element Model command block, particularly in the Parameters for Block section. Rather than attempting
to include the entire set of command lines available in the Finite Element command block, only a small
subset of key command lines are shown here. One should consult documentation for the specific application
to find a complete listing of the relevant Finite Element Model command lines.

3.2 Finite Element Model

Scope: Sierra

Begin Finite Element Model Label

Alias DatabaseName As InternallName

Component Separator Character Option Separator

Create GroupType NewSurfaceName Add SurfaceName. ..
Coordinate System {=|are|is} CoordinateSystem

Database Name {=|are|is} StreamlName

Database Type {=|are|is} DatabaseTypes

Decomposition Method {=|are|is} Method

Global Id Mapping Backward Compatibility Optionl Option2
Omit Block BlockList...

Omit Volume VolumeList...

Time Scale Factor Option Scale

26

End

Use

Use

Generic Names

Material MateriallName For VolumeList...

Begin Parameters For Block Blockname

End

Begin Parameters For Phase Phase Name

End

Begin Parameters For Surface Surface_Name

End

Summary

Describes the location and type of the input stream used for defining a geometry model for
the enclosing region.

3.2.1 Alias

Scope:

Finite Element Model

Alias DatabaseName As InternallName

Parameter Value Default

DatabaseName string undefined

InternalName string undefined
Summary Name the database entity ”DatabaseName” as ”InternalName”

Description

This ”InternalName” may then be referenced in the data file in addition to the original name.

3.2.2 Component Separator Character

Scope:

Finite Element Model

Component Separator Character Option Separator

Parameter Value Default
Separator string undefined
Summary The separator is the single character used to separate the output variable basename (e.g.

»

"stress”) from the suffices (e.g. ”xx”, "yy”) when displaying the names of the individual
variable components. For example, the default separator is ”_”, which results in names
similar to "stress_xx”, "stress_yy”, ... ”stress_zx”. To eliminate the separator, specify an

empty string (””) or NONE.

27

3.2.3 Create
Scope: Finite Element Model

Create GroupType NewSurfaceName Add SurfaceName. ..

Parameter Value Default
NewSurfaceName string undefined
SurfaceName string. .. undefined
Summary Create a new set (node, edge, face, element, side/surface) as the union of two or more existing
sets. The sets must exist in the mesh database or have been created by a previous CREATE
command.

3.2.4 Coordinate System
Scope: Finite Element Model

Coordinate System {=|are|is} CoordinateSystem

Parameter Value Default

CoordinateSystem {axisymmetric|barycentric|cartesian|cyclidic| undefined
cylindrical |polar|quadriplanar|skew|spherical
|toroidal|trilinear}

Summary The interpretation of the geometry data stored in this database. Optional. Defaults to
Cartesian.

3.2.5 Database Name
Scope: Finite Element Model

Database Name {=|are|is} StreamName

Parameter Value Default
StreamName string undefined
Summary The base name of the database containing the output results. If the filename begins with

the '/’ character, it is an absolute path; otherwise, the path to the current directory will
be prepended to the name. If this line is omitted, then a filename will be created from the
basename of the input file with a ”.g” suffix appended.

3.2.6 Database Type
Scope: Finite Element Model

Database Type {=|are|is} DatabaseTypes

Parameter Value Default
Database Types {catalyst|dof |dof_exodus|exodus|exodusii | undefined
generated|genesis|parallel exodus|xdmf}

28

Summary The database type/format used for the mesh.

3.2.7 Decomposition Method
Scope: Finite Element Model

Summary The decomposition algorithm to be used to partition elements to each processor in a parallel
run.

3.2.8 Global Id Mapping Backward Compatibility
Scope: Finite Element Model

Summary (Unsupported, do not use)

3.2.9 Omit Block
Scope: Finite Element Model

Omit Block BlockList...

Parameter Value Default
BlockList string. .. undefined

Summary Specifies that the element blocks named in the blockList be omitted from the analysis.

Description If an element block is omitted, then it is illegal to refer to it later in the input file e.g an
initial condition may not be specified on an omitted element block. The elements, faces, etc
are never created and it is as if the omitted element blocks did not exist in the mesh file. If
a surface is completely determined by the omitted element block, then it is illegal to specify
boundary conditions on that surface. However, if the surface spans multiple element blocks,
boundary conditions may be applied on the portion of the surface supported by the element
blocks that are not omitted.

3.2.10 Omit Volume
Scope: Finite Element Model

Omit Volume VolumeList...

Parameter Value Default
VolumeList string... undefined
Summary Specifies that the volumes named in the volumeList be omitted from the analysis.
Description If a volume is omitted, then it is illegal to refer to it later in the input file e.g an initial condition

may not be specified on an omitted volume. The elements, faces, etc are never created and
it is as if the omitted volumes did not exist in the mesh file. If a surface is completely

29

determined by the omitted volume, then it is illegal to specify boundary conditions on that
surface. However, if the surface spans multiple volumes, boundary conditions may be applied
on the portion of the surface supported by the volumes that are not omitted.

3.2.11 Time Scale Factor
Scope: Finite Element Model

Time Scale Factor Option Scale

Parameter Value Default
Scale real undefined
Summary The scale factor to be applied to the times on the mesh database. If the scale factor is 20

and the times on the mesh database are 0.1, 0.2, 0.3, then the application will see the mesh
times as 2, 4, 6.

3.2.12 Use Generic Names
Scope: Finite Element Model

Summary If this command is present then the name of all blocks and sets in the mesh will be of the
form "type_”+id. For example, an element block with id=42 will be named ”block_42”; a
sideset with id 314 will be named ”surface_314”. If there are any names in the mesh file,
those names will be aliases for the blocks and sets. If this command is not present, then if
a name is in the mesh file, it will be used as the name and the generic generated name will
be an alias. This is used a a workaround in codes that do not correctly handle named blocks
and sets or as a workaround in meshes which contain non-user-specified names.

3.2.13 Use Material
Scope: Finite Element Model

Use Material MatertalName For VolumeList...

Parameter Value Default

MaterialName string undefined

VolumeList string. .. undefined
Summary Associate the given volumes with the indicated material name.

3.3 Parameters For Block
Scope: Finite Element Model

Begin Parameters For Block Blockname

Include All Blocks

Local Coordinate System {=|are|is} Mesh Entities

30

Material MatName

Material = MatName

Phase PhaselLabel {=|are|is} MaterialName

Remove Block {=|are|is} EzcludeBlockList...
End

Summary Specifies analysis parameters associated with each element block.

3.3.1 Include All Blocks

Scope: Parameters For Block

Summary Use this parameters definition for all blocks.

When using this option within the FINITE ELEMENT MODEL command block the PA-
RAMETERS FOR BLOCK will not use a Blockname.

3.3.2 Local Coordinate System

Scope: Parameters For Block

Local Coordinate System {=|are|is} Mesh Entities

Parameter Value Default
Mesh Entities string undefined
Summary Associate coordinate system with mesh entity.
Description Specify the local coordinate system to be used in conjunction with given element blocks.

3.3.3 Material

Scope: Parameters For Block

Material MatName

Parameter Value Default
MatName string undefined
Summary Associates this element block with its material properties.

3.3.4 DMaterial =

Scope: Parameters For Block

Material = MatName

31

Parameter Value Default

MatName string undefined
Summary Associates this element block with its material properties.
3.3.5 Phase

Scope: Parameters For Block

Phase PhaselLabel {=|are|is} MaterialName

Parameter Value Default

PhaseLabel string undefined

MaterialName string undefined
Summary Associate phase PhaseLabel with material Material Name on this block.

3.3.6 Remove Block

Scope: Parameters For Block

Remove Block {=|are|is} EzcludeBlockList...

Parameter Value Default
ExcludeBlockList string. .. undefined
Summary List of blocks to exclude.

3.4 Global Constants

Scope: Sierra

Begin Global Constants empty

Gravity Vector {=|are|is} Gravity; Gravity, Gravitys
Ideal Gas Constant {=|are|is} Sigma

K-E Turbulence Model Parameter Param {=|are|is} Value
K-W Turbulence Model Parameter Param {=|are|is} Value
Les Turbulence Model Parameter Param {=|are|is} Value
Stefan Boltzmann Constant {=|are|is} Sigma

Turbulence Model Param Number {=|are|is} Value

End

Summary Set of universal constants for a simulation.

32

3.4.1 Gravity Vector
Scope: Global Constants

Gravity Vector {=|are|is} Gravity, Gravitys Gravitys

Parameter Value Default
Gravity real]l real 2 real.3 undefined
Summary Gravity constant in vector form, acceleration components.

3.4.2 Ideal Gas Constant
Scope: Global Constants

Ideal Gas Constant {=|are|is} Sigma

Parameter Value Default
Sigma real undefined
Summary Ideal gas constant. extbfNOTE: Another ideal gas constant value can be specified while using

certain code capabilities. This global constants value will be discarded for any other specified
ideal gas constant values.

3.4.3 K-E Turbulence Model Parameter
Scope: Global Constants

K-E Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default

Param string undefined

Value real undefined
Summary k — ¢ RANS turbulence model parameters.

3.4.4 K-W Turbulence Model Parameter
Scope: Global Constants

K-W Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default

Param string undefined

Value real undefined
Summary k —w RANS turbulence model parameters.

33

3.4.5 Les Turbulence Model Parameter
Scope: Global Constants

Les Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default

Param string undefined

Value real undefined
Summary LES turbulence model parameters.

3.4.6 Stefan Boltzmann Constant
Scope: Global Constants

Stefan Boltzmann Constant {=|are|is} Sigma

Parameter Value Default
Sigma real undefined
Summary Stefan-Boltzmann constant. Depending on the units involved in the specific problem by the

user, this value will differ.

3.4.7 Turbulence Model
Scope: Global Constants

Turbulence Model Param Number {=|are|is} Value

Parameter Value Default

Param string undefined

Value real undefined
Summary Turbulence model Schmidt and Prandtl numbers

3.5 Definition For Function

Scope: Sierra

Begin Definition For Function FunctionName

Abscissa {=|are|is} Name...

Abscissa Offset {=|are|is} Abscissa_offset

Abscissa Scale {=|are|is} Abscissa_scale

At Discontinuity Evaluate To Option

Column Titles Titles; Titless...

Data File = filename [X From Column zcol Y From Column ycol]

Debug {=|are|is} Option

34

Differentiate Expression {=|are|is} Ezpr
Evaluate Expression {=|are|is} Ezpr
Evaluate From z0 To z1 By Dz

Expression Variable: Ezpr = VarType wvalue_var_name...
Expression Variable: Ezpr

Ordinate {=|are|is} Name...

Ordinate Offset {=|are|is} Ordinate_offset
Ordinate Scale {=|are|is} Ordinate_scale
Scale By =

Type {=|are|is} Type

X Offset {=|are|is} X offset

X Scale {=|are|is} X_scale

Y Offset {=|are|is} Y.offset

Y Scale {=|are|is} Y.scale

Begin Expressions empty

End
Begin Values empty
End
End
Summary Defines a function in terms of its type and values.

3.5.1 Abscissa

Scope: Definition For Function

Abscissa {=|are|is} Name...

Parameter Value Default
Name string. .. undefined
Summary Specifies a string identifier for the independent variable. Optionally specify a scale and/or

offset value which transforms the abscissa values into scaled_abscissa = scale * (abscissa +
abscissa_offset).

3.5.2 Abscissa Offset

Scope: Definition For Function

Abscissa Offset {=|are|is} Abscissa_offset

Parameter Value Default
Abscissa_offset real undefined

Summary Alias for X OFFSET

35

3.5.3 Abscissa Scale

Scope: Definition For Function

Abscissa Scale {=|are|is} Abscissa_scale

Parameter Value Default
Abscissa_scale real undefined

Summary Alias for X SCALE

3.5.4 At Discontinuity Evaluate To

Scope: Definition For Function

Summary Control the behavior of a piecewise constant function when evaluated at a discontinuity (plus
or minus a small tolerance). The default behavior is to take the value to the right of the
discontinuity. If "Left” is specified, the value to the left of the discontinuity is taken instead.

3.5.5 Column Titles

Scope: Definition For Function

Column Titles Titles; Titlessy...

Parameter Value Default
Titles string._1 string2... undefined
Summary Name the columns (and also defined the expected number of columns) for Multicolumn

Piecewise Linear tabular data.

3.5.6 Data File

Scope: Definition For Function

Data File = filename [X From Column zcol Y From Column ycol]

Parameter Value Default
filename string undefined
Summary Function will read tabular data from an input file. Compatible with the piecewise linear

function type. File must be of form like:

EXAMPLE FILE 1.099 1191 1.101 221 5.9011 133.1

Lines headed by a # are considered comments and will be ignored. Data itself must by in
tabular columns seperated by whitespace or commas.

36

3.5.7 Debug

Scope: Definition For Function

Summary Prints functions to the log file.

3.5.8 Differentiate Expression

Scope: Definition For Function

Differentiate Expression {=|are|is} Ezpr

Parameter Value Default
Ezpr (expression) undefined
Summary Specifies the expression of derivative of evaluation expression.
3.5.9 Evaluate Expression
Scope: Definition For Function
Evaluate Expression {=|are|is} Ezpr
Parameter Value Default
Ezpr (expression) undefined
Summary Specifies the expression to evaluate.
Description This will greatly help with manufactured solutions, and be useful for other purposes as well.
This first implementation goes like this:
begin definition for function pressure
type is analytic
evaluate expression is "x <= 0.0 ? 0.0 : (x < 0.5 7 (x <
1.0 7 (x - 0.5) *560.0 + 100.00 : 150.0));"
type is piecewise linear
begin values
0.0 0.0
0.5 100.0
1.0 150.0
end values

end definition for function pressure

Also, notice that semicolon at the end. Be sure to put it there for now. You can actually
provide multiple expressions to be evaluated, each terminated with a semicolon. This will be

handy when multi-dependent variable come into the fold.

The following functions are currently implemented.

Operators All C-language operators are supported, e.g. + — /|| ? :

Parens ()

37

Math Functions

abs(x) absolute value of x

mod(x, y) modulus of x|y

ipart(x) integer part of x

fpart(x) fractional part of x

min(x0, x1, ...) minimum value of xn

max(x0, x1, ...) maximum value of xn
Power functions

pow(x, y) x to the y power
sqrt(x) square root of x

Trig functions
sin(x) sine of x
sinh(x) hyperbolic sine of x
asin(x) arcsine of x
cos(x) cosine of x
cosh(x) hyperbolic cosine of x
acos(x) arccosine of x
tan(x) tangent of x
tanh(x) hyperbolic tangent of x
atan(x) arctangent of x
atan2(y, x) arctangent of y/x, signs of x and y determine quadrant (see atan2 man

page)
Logarithm functions

log(x) natural logarithm of x
In(x) natural logarithm of x
exp(x) e to the x power

logn(x, y) the y base logarithm of x
Rounding functions

ceil(x) smallest integral value not less than x

floor(x) largest integral value not greater than x
Random functions

rand(x) random number between 0.0 and 1.0, not including 1.0

srand(x) seeds the random number generator
Conversion routines

deg(x) converts radians to degrees

rad(x) converts degrees to radians

recttopolr(x, y) maginitude of vector x, y

recttopola(x, y) angle of vector x, y

poltorectx(r, theta) x coordinate of angle theta at distance r

poltorecty(r, theta) y coordinate of angle theta at distance r

38

3.5.10 Evaluate From

Scope: Definition For Function

Evaluate From z0 To zl1 By Dz

Parameter Value Default

z0 real undefined

xl real undefined

Dx real undefined
Summary Specifies the range and evaluation interval.

3.5.11 Expression Variable:

Scope: Definition For Function

Expression Variable: Ezpr = VarType wvalue_var_name...

Parameter Value Default

Ezpr string undefined

value_var_-name string... undefined
Summary Specifies what the arguments of an expression correspond to. For example:

BEGIN DEFINITION FOR FUNCTION dx_shear TYPE = ANALYTIC EXPRESSION vari-

able: mx = NODAL model_coordinates(x) EXPRESSION variable: my = NODAL model_coordinates(y)
EXPRESSION variable: time = GLOBAL time EVALUATE EXPRESSION =7 (time/termTime)*(stretchx™®(
- 0.0) + ((my-0.25)/0.5)*stretchxy)” END

Assuming the above expression is being evaluated on nodes the current values for x and y
model coordinates would be placed into mx and my and current analysis time placed into
time

3.5.12 Expression Variable:

Scope: Definition For Function

Expression Variable: Ezpr

Parameter Value Default
Ezpr string undefined
Summary Specifies what the arguments of an expression exists, but does not define it correspond to.

For example:

BEGIN DEFINITION FOR FUNCTION dx_shear TYPE = ANALYTIC EXPRESSION vari-
able: mx EXPRESSION variable: my EXPRESSION variable: time EVALUATE EXPRES-
SION = 7 (time/termTime)*(stretchx*(mx - 0.0) + ((my-0.25)/0.5)*stretchxy)” END

Call function must determine what each variable actually is is based off of the string name

39

3.5.13 Ordinate

Scope: Definition For Function

Ordinate {=|are|is} Name...

Parameter Value Default
Name string... undefined
Summary Specifies a string identifier for the dependent variable. Optionally specify a scale and/or

offset value which transforms the ordinate values into scaled_ordinate = scale * (ordinate +
ordinate_offset).

3.5.14 Ordinate Offset

Scope: Definition For Function

Ordinate Offset {=|are|is} Ordinate_offset

Parameter Value Default
Ordinate_offset real undefined

Summary Alias for Y OFFSET

3.5.15 Ordinate Scale

Scope: Definition For Function

Ordinate Scale {=|are|is} Ordinate_scale

Parameter Value Default
Ordinate_scale real undefined

Summary Alias for Y SCALE

3.5.16 Scale By

Scope: Definition For Function

Scale By «z
Parameter Value Default
T real undefined
Summary Specifies a scale factor to be applied.
3.5.17 Type

Scope: Definition For Function

40

Summary Specifies the type of function.

3.5.18 X Offset

Scope: Definition For Function

X Offset {=|are|is} X offset

Parameter Value Default
X_offset real undefined
Summary Sets an offset for the x-axis
3.5.19 X Scale
Scope: Definition For Function
X Scale {=|are|is} X_scale
Parameter Value Default
X_scale real undefined
Summary Sets a scale factor for the x-axis
3.5.20 Y Offset
Scope: Definition For Function
Y Offset {=|are|is} Y.offset
Parameter Value Default
Y_offset real undefined
Summary Sets an offset for the y-axis
3.5.21 Y Scale
Scope: Definition For Function
Y Scale {=|are|is} Y.scale
Parameter Value Default
Y_scale real undefined
Summary Sets a scale factor for the y-axis
3.6 Values

Scope: Definition For Function

Begin Values empty

Xyvalues. ..
End
Summary Lists the values of the function. The values should be listed one pair per line, independent
variable first, with whitespace or comma as a separator.
3.6.1

Scope: Values

Xyvalues. ..

Parameter Value Default

Xyvalues real... undefined
Summary For a piecewise linear function, lists an x-y pair for the nth interpolation point.

3.7 Restart Overview

Sierra Framework services provide convenient utilities for restarting an analysis from previous results. The
most general capability supplements the results of a previous analysis with internal state variables to continue
an analysis. In this case the input mesh is supplied from the Input Database Name from the Finite Element
Model command block 3.1 and the restart information is obtained from the the Input Database Name from
the Restart Data command block. Continuation of a job using restart data output is invoked using the
command line which follows.

3.7.1 Restart Time
Scope:

Restart Time {=|are|is} Time

Parameter Value Default
Time real undefined
Summary Specify restart file read at a specified time.

Description NOTE: This command must be placed at the Sierra scope of the input file.

Specify the time that the analysis will be restarted. In addition to this line command, each
Region in the analysis (strictly, only the region(s) that will be restarted) must have a restart
block specifying the database to read the restart state data. The restart ’time’ must be
greater than zero and less than or equal to the termination time.

By default, use of this command will cause previous output files (e.g., results, history, heart-
beat, restart) to be overwritten. If this command is chosen, the onus is placed on the user to
ensure that previous output files are not overwritten.

42

Chapter 4

Solution Control Reference

4.1 Overview

Aria uses the solution control (SC) library from the SIERRA Framework to orchestrate execution of simula-
tions. All Aria input files must include a Solution Control Description block in the Procedure section of the
input file. This description contains directives for executing either a steady-state (sequential) or transient
analysis either of which can include nested nonlinear iteration or subcycling. Within the description one
selects a named solution control system where the details of execution are more clearly spelled out. Because
there are similarities between the Sequential, Transient, Nonlinear Iteration and Subcycling many operations
are shared between these directives. However, each of these segments must be uniquely named internally so
they can be properly managed under solution control.

Within each SC system, execution of a problem defined at the Region level corresponds to an Advance
directive. Thus a steady-state analysis could conceivably be carried out with a single Advance directive. For
transient analysis the system can contain several time blocks, each with a corresponding Advance directive.
Examples of different control structures are given below.

An example the solution control command block for steady-state analysis would reflect the structure
indicated below:

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance myRegion
End
End
End

Begin Aria Region myRegion

End Aria Region myRegion

End Procedure myProcedure

43

A solution control command block for steady-state analysis containing nonlinear iteration for Aria and
Adagio would reflect the general structure indicated below. Note that advancement of the solution can be
governed by a user specified criteria, Parameters for Nonlinear Iteration:

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Begin Nonlinear Iteration
Advance myAriaRegion
Advance myAdagioRegion
transfer adagio_to_aria
End Nonlinear Iteration
End
End

Begin Parameters for Nonlinear Iteration
converged [When-expression]
End Parameters for Nonlinear Iteration

End

Begin Aria Region myAriaRegion

End Aria Region myAriaRegion

Begin Adagio Region myAdagioRegion

End Adagio Region myAdagioRegion

End Procedure myProcedure

In the case of transient analysis the solution control command block will contain specification of times
for which the analysis will be carried out. Additionally parameters defining the time integration must also
be supplied by the user. Details concerning time integration parameters are included in the user manual for
the application. A simple example the solution control command block for transient analysis would resemble
the structure indicated below:

44

Begin Procedure My_Aria_Procedure
Begin Solution Control Description
Use System Main

Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region

End

Begin Transient Time_Block_2
Advance My_Aria_Region

End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8
Begin Parameters For Aria Region My_Aria_Region
Time Step Variation = Fixed
Initial Time Step Size = 0.001

End
End

Begin Parameters For Transient Time_Block_2
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Adaptive
Initial Time Step Size = 0.001
Predictor-Corrector Tolerance = le-3
Minimum Time Step Size = le-6
End
End

End

Similarly subcycled iterations in a one-way coupling between Aria and Presto could also be carried out
in a transient analysis. In this case Presto subcycles at a small time, Aria has a larger time step and Aria
is advanced when the two time steps arrive at the same solution time.

Begin Procedure My_Aria_Procedure
Begin Solution Control Description

Use System Main

45

Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Transfer Presto_to_Aria
Advance My_Aria_Region

Begin Subcycle PrestoSubcycle
Advance PrestoRegion
End
End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8

Begin Parameters For Aria Region My_Aria_Region
Time Step Variation = Fixed
Initial Time Step Size = 0.001

End

Begin Parameters for Presto Region PrestoRegion
initial time step = 1.0e-6
time step scale factor = 1.0
time step increase factor = 10.
step interval = 500

End

End

End

Begin Aria Region myAriaRegion

End Aria Region myAriaRegion

Begin Presto Region myPrestoRegion

End Presto Region myPrestoRegion

End Procedure myProcedure

46

It is important to note that Solution Control can orchestrate the execution of one Region or the execution
of many Regions. Within a loosely-coupled code analysis SC is also used to control the movement of data
between the coupled codes using the Transfer subsystem.

The outline views of various couplings include both Transfer and Advance events. In the examples
above the event will always occur in the sequence specified. Alternatively one can specify that the event be
carried out conditionally subject to criteria described syntactically as a ”C” language [When — expression)
where the expression criteria includes internal code variables or explicit evaluations. Here the input [WWhen —
expression| is parsed and transformed into an executable ”C” statement. While some of the internal code
variables used by a [When—expression] are intuitive (i.e. CURRENT_TIME and CURRENT_STEP) many others are
application dependent. The most widely used explicit evaluations are measures of convergence based upon
solution residuals adagio.norm(0.0) for solid mechanics applications and aria.MaxResidualNorm(0.0) for
thermal-fluid applications. Several examples of [When — expression] are given below noting that the ”C”
expression must be enclosed in quotes within the input file.

Convergence based upon comparison of application residuals:
Begin parameters for nonlinear converge_step_pl
following two lines shown must be a single input command line
converged when $"(aria.MaxResidualNorm(0.0) < 1.e-6 && adagio.norm(0.0)

< 1.e-6) || CURRENT_STEP > 2000"
End parameters for nonlinear converge_step_pl

Transfer at first step and then every four steps:

Transfer aria_to_adagio when "(CURRENT_STEP == 1) || (CURRENT_STEP % 4 == 0)"
Advance the region at second step:

advance aria_region when "CURRENT_STEP == 2"

Additionally, one may also use application specific global variables in the [When — expression] criteria.
Global variables that are generally available for use are listed as such in the simulation log file. Unfortunately
these variables may not be directly accessible to the user. Hence consultation with an application developer
may be required in this regard.

In the Solution Control syntax described below it is implied that the optional [When — expression]s
represent evaluations which will be interpreted at parse time.

4.2 Solution Control Description

Scope: Procedure

Begin Solution Control Description Name

Use System Name

Begin Initialize Name
End

Begin Parameters For
End

47

Begin System Name
End

End

Summary Contains the commands needed to execute an analysis using the arpeggio procedure that
utilizes Solver Control.

4.2.1 Use System

Scope: Solution Control Description

Use System Name

Parameter Value Default
Name string undefined
Summary This set the name of which system to use.
4.3 System

Scope: Solution Control Description

Begin System Name

Adapt Region_name... Using Field_name... [When When-ezpression]

Compute Indicator On Region_name... Using Indicator_name... [When When-ezpresstion
]

Event Name... [When When-exzpression]

Execute Postprocessor Group Group_name... 0On Regton_name... [When When-expression
]

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]
Mark Region_name... Using Marker_name... [When When-ezpression]
Markadapt Regtion_name Using Marker [When When-ezpression]
Output Name [When When-expression]

Simulation Max Global Iterations {=|are|is} Number

Simulation Start Time {=|are|is} Number

Simulation Termination Time {=|are|is} Number

Transfer Name [When When-exzpression]

Use Initialize Name

Begin Adaptivity Name

End

Begin Sequential Name
End

Begin Transient Name

48

End

End
Summary This block wraps a solver system for a given name. The NAME parameter is the name
used to define the system. There can be more than one system block in the Solver Control
Description block. The "use system NAME” line commmand controls which one is to be
used.
4.3.1 Adapt

Scope: System

Adapt Region_name... Using Field_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.3.2 Compute Indicator On
Scope: System

Compute Indicator On Region_name... Using Indicator_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.3.3 Event
Scope: System

Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

49

4.3.4 Execute Postprocessor Group
Scope: System

Execute Postprocessor Group Group_name... 0On Regton_name... [When When-ezpression]
Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be executed on

region region_name.

4.3.5 Indicatemarkadapt
Scope: System

Indicatemarkadapt Region_name Using Indicator Marker [When When-ezpression]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined
Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...
4.3.6 Mark

Scope: System

Mark Region_name... Using Marker_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.3.7 Markadapt
Scope: System

Markadapt Regton_name Using Marker [When When-ezpression]

Parameter Value Default

Region_name string undefined

Marker string undefined
Summary Shortcut line command... equivalent to: Mark ... Adapt ...

50

4.3.8 Output
Scope: System

Output Name [When When-ezpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.3.9 Simulation Max Global Iterations
Scope: System

Simulation Max Global Iterations {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The Total number of Solves.

4.3.10 Simulation Start Time
Scope: System

Simulation Start Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Simulation starting time. (by default 0.0)

4.3.11 Simulation Termination Time
Scope: System

Simulation Termination Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary The drop dead time.

4.3.12 Transfer
Scope: System

Transfer Name [When When-exzpression]

51

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the specified
region. All transfers with a send region of 'name’ will be executed.

4.3.13 Use Initialize
Scope: System

Use Initialize Name

Parameter Value Default
Name string undefined
Summary This set the name of which initialization to use.

4.4 'Transient
Scope: System

Begin Transient WName

Adapt Region_name... Using Field name... [When When-expression]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_name... [When When-exzpression
]

Event Name... [When When-ezpression]

Execute Postprocessor Group Group_name... 0On Regton_name... [When When-expression
]

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]
Involve Name

Mark Region_name... Using Marker_name... [When When-expression]

Markadapt Regton_name Using Marker [When When-ezpression]

Output Name [When When-expression]

Transfer Name [When When-exzpression]

Begin Adaptivity Name

End

Begin Nonlinear Name
End

Begin Subcycle Name
End

End

Summary This block is used to wrap a time loop.

52

4.4.1 Adapt

Scope: Transient

Adapt Region_name... Using Field name... [When When-exzpression]
Parameter Value Default
Region_name string... undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.4.2 Advance

Scope: Transient

Advance Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that advances the solution. The

name is that matches the physics.

4.4.3 Compute Indicator On

Scope: Transient

Compute Indicator On Region_name... Using Indicator_name... [When When-expression]
Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.4.4 Event

Scope: Transient

Event Name... [When When-exzpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

53

4.4.5 Execute Postprocessor Group

Scope: Transient

Execute Postprocessor Group Group_name... 0On Regton_name... [When When-ezpression]
Parameter Value Default
Group_name string... undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be executed on

region region_name.

4.4.6 Indicatemarkadapt

Scope: Transient

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined
Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.4.7 Involve

Scope: Transient

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.
4.4.8 Mark

Scope: Transient

Mark Region_name... Using Marker_name... [When When-ezpression]
Parameter Value Default
Region_name string... undefined
Marker_-name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

54

4.4.9 Markadapt

Scope: Transient

Markadapt Regton_name Using Marker [When When-ezpression]

Parameter Value Default

Region_name string undefined

Marker string undefined
Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.4.10 Output

Scope: Transient

Output Name [When When-ezpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.4.11 Transfer

Scope: Transient

Transfer Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

4.5 Nonlinear

Scope: Sequential

Begin Nonlinear Name

Adapt Region_name... Using Field_name... [When When-ezpression]

Advance Name... [When When-ezpression]

Compute Indicator On Region_name... Using Indicator_name... [When When-ezpression
]

Event Name... [When When-exzpression]

Execute Postprocessor Group Group_name... On Region_name... [When When-ezpression
]

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]

55

Involve Name

Mark Region_name... Using Marker_name... [When When-ezpression]
Markadapt Region_name Using Marker [When When-ezpression]
Output Name [When When-expression]

Transfer Name [When When-ezpression]

Begin Subcycle Name
End

End
Summary This block is used to wrap a nonlinear solve loop.
4.5.1 Adapt
Scope: Nonlinear
Adapt Region_name... Using Field name... [When When-exzpression]
Parameter Value Default
Region_name string... undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.5.2 Advance

Scope: Nonlinear

Advance Name... [When When-expression]
Parameter Value Default
Name string... undefined
Summary Used within a Solver Control block to indicate a single step that advances the solution. The

name is that matches the physics.

4.5.3 Compute Indicator On

Scope: Nonlinear

Compute Indicator On Region_name... Using Indicator_name... [When When-ezpresstion]
Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

56

4.5.4 Event

Scope: Nonlinear

Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

4.5.5 Execute Postprocessor Group

Scope: Nonlinear

Execute Postprocessor Group Group_name... On Region_name... [When When-ezpression]
Parameter Value Default
Group_name string. .. undefined
Region_name string... undefined

Summary Used within a Solver Control block to cause the group named group_name to be executed on

region region_name.

4.5.6 Indicatemarkadapt

Scope: Nonlinear

Indicatemarkadapt Region_name Using Indicator Marker [When When-ezpression]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined
Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.5.7 Involve

Scope: Nonlinear

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

57

4.5.8 Mark

Scope: Nonlinear

Mark Regiom_name... Using Marker_name... [When When-exzpression]
Parameter Value Default
Region_name string... undefined
Marker_-name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.5.9 Markadapt

Scope: Nonlinear

Markadapt Region_name Using Marker [When When-exzpression]

Parameter Value Default

Region_name string undefined

Marker string undefined
Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.5.10 Output

Scope: Nonlinear

Output Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.5.11 Transfer

Scope: Nonlinear

Transfer Name [When When-ezpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

58

4.6 Subcycle

Scope: Nonlinear

Begin Subcycle Name

Adapt Region_nmame... Using Field_name... [When When-exzpression]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_name... [When When-exzpresstion
]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... 0On Regton_name... [When When-expression
]

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]
Involve Name

Mark Region_name... Using Marker_name... [When When-ezpression]

Markadapt Region_name Using Marker [When When-exzpression]

Output Name [When When-expression]

Transfer Name [When When-exzpression]

End
Summary This block is used to wrap a subcycle time loop.
4.6.1 Adapt

Scope: Subcycle

Adapt Region_name... Using Field_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.6.2 Advance
Scope: Subcycle

Advance Name... [When When-expression]
Parameter Value Default
Name string... undefined
Summary Used within a Solver Control block to indicate a single step that advances the solution. The

name is that matches the physics.

59

4.6.3 Compute Indicator On
Scope: Subcycle

Compute Indicator On Region_name... Using Indicator_-name... [When When-ezpresstion]
Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.6.4 Event
Scope: Subcycle

Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

4.6.5 Execute Postprocessor Group
Scope: Subcycle

Execute Postprocessor Group Group_name... On Region_name... [When When-ezpression]
Parameter Value Default
Group_name string... undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be executed on

region region_name.

4.6.6 Indicatemarkadapt
Scope: Subcycle

Indicatemarkadapt Region_name Using Indicator Marker [When When-exzpression]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined
Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

60

4.6.7 Involve
Scope: Subcycle

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.
4.6.8 Mark

Scope: Subcycle

Mark Regiom_name... Using Marker_name... [When When-exzpression]
Parameter Value Default
Region_name string... undefined
Marker_-name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.6.9 Markadapt
Scope: Subcycle

Markadapt Regtion_name Using Marker [When When-ezpression]

Parameter Value Default

Region_name string undefined

Marker string undefined
Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.6.10 Output
Scope: Subcycle

Output Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.6.11 Transfer
Scope: Subcycle

61

Transfer Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

4.7 Sequential
Scope: System

Begin Sequential Name

Adapt Regtion_name... Using Field_name... [When When-ezpression]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_name... [When When-expression
]

Event Name... [When When-exzpression]

Execute Postprocessor Group Group_name... On Region_name... [When When-ezpression
]

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]
Involve Name

Mark Region_name... Using Marker_name... [When When-expression]

Markadapt Region_name Using Marker [When When-exzpression]

Output Name [When When-expression]

Transfer Name [When When-ezpression]

Begin Adaptivity Name
En

Beéin Nonlinear Name
En

End
Summary This block is used to wrap a sequential solution. It is used to wrap a sequence of Non-Linear
or pseudo time solve step solves.
4.7.1 Adapt

Scope: Sequential

Adapt Region_name... Using Field_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

62

4.7.2 Advance

Scope: Sequential

Advance Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that advances the solution. The

name is that matches the physics.

4.7.3 Compute Indicator On

Scope: Sequential

Compute Indicator On Region_name... Using Indicator_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.7.4 Event

Scope: Sequential

Event Name... [When When-exzpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

4.7.5 Execute Postprocessor Group

Scope: Sequential

Execute Postprocessor Group Group_name... O0On Region_name... [When When-ezpression]
Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be executed on

region region_name.

63

4.7.6 Indicatemarkadapt

Scope: Sequential

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined
Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.7.7 Involve

Scope: Sequential

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.
4.7.8 Mark

Scope: Sequential

Mark Region_name... Using Marker_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Marker_name string... undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block should

be performed.

4.7.9 Markadapt

Scope: Sequential

Markadapt Regton_name Using Marker [When When-ezpression]

Parameter Value Default

Region_name string undefined

Marker string undefined
Summary Shortcut line command... equivalent to: Mark ... Adapt ...

64

4.7.10 Output

Scope: Sequential

Output Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.7.11 Transfer

Scope: Sequential

Transfer Name [When When-expression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

4.8 Initialize

Scope: Solution Control Description

Begin Initialize Name

Advance Name... [When When-expression]
Event Name... [When When-expression]
Involve Name

Transfer Name [When When-ezpression]
End

Summary This block wraps a initializer for a given name. The NAME parameter is the name used
to define the initialization block. There can be more than one initialize block in the Solver
Control Description block. The ”use initialize NAME” line commmand controls which one is
to be used.

4.8.1 Advance

Scope: Initialize

Advance Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

65

Summary Used within a Solver Control block to indicate a single step that advances the solution. The
name is that matches the physics.

4.8.2 Event

Scope: Initialize

Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

4.8.3 Involve

Scope: Initialize

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

4.8.4 Transfer

Scope: Initialize

Transfer Name [When When-ezpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

4.9 Parameters For

Scope: Solution Control Description

Begin Parameters For

Converged When Convergence-expression
Incremental Number Of Steps {=|are|is} Number
Initial Deltat {=|are|is} Number

Number Of Adaptivity Steps {=|are|is} Number
Number Of Steps {=|are|is} Number

66

Reinitialize Transient

Start Time {=|are|is} Number

Termination Time {=|are|is} Number

Time Step Quantum {=|are|is} TimeStepQuantum
Time Step Style TimeStepStyle. ..

Total Change In Time {=|are|is} Number

Begin Parameters For Aria Region RegionName
End

End

Summary A Solver Control PARAMETERS block to set up control data for the SC_type parameter.
Inside this block one sets the time step parameters or nonlinear parameters.

4.9.1 Converged When

Scope: Parameters For

Converged When Convergence-expression

Parameter Value Default
Convergence-expression (expression) undefined
Summary Set the convergence expression.

4.9.2 Incremental Number Of Steps

Scope: Parameters For

Incremental Number Of Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The incremental number steps to run the time for nonlinear loop. Number of time steps to

run after restarting. NUMBER OF STEPS is total number of steps to run

4.9.3 Initial Deltat

Scope: Parameters For

Initial Deltat {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign an initial delta T

67

4.9.4 Number Of Adaptivity Steps

Scope: Parameters For

Number Of Adaptivity Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The number steps to run the time or nonlinear loop

4.9.5 Number Of Steps

Scope: Parameters For

Number Of Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The number steps to run the time for nonlinear loop

4.9.6 Reinitialize Transient

Scope: Parameters For

Summary Reset time and re-initialize regions each step of the adaptivity loop.

4.9.7 Start Time

Scope: Parameters For

Start Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign a start time.

4.9.8 Termination Time

Scope: Parameters For

Termination Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign a final time to stop

68

4.9.9 Time Step Quantum

Scope: Parameters For

Time Step Quantum {=|are|is} TimeStepQuantum

Parameter Value Default
TimeStep Quantum real undefined
Summary Set the time stepping quantum time for SNAP style stepping.

4.9.10 Time Step Style

Scope: Parameters For

Time Step Style TimeStepStyle...

Parameter Value Default
TimeStepStyle {clip|noclip|nosnap|snap} undefined
Summary Set the time stepping style.

When CLIP is specified, the time step size will be clipped at the last step of the transient
loop so that it ends at the transient loop’s end time. If clip is not specified, the last time is
allowed to exceed to the transient loop’s end time and the following transient loop will start
at the exceeded end time.

When SNAP is specified, the time step is broken down into ”quantum” time units. By
default this quantum time is 12 orders of magnitude down from the difference between the
start and end time for the transient loop. This value can be overridden using the TIME STEP
QUANTUM line command. All time values are ”snapped” to multiples of the quantum time
by rounding to the nearest quantum multiple.

4.9.11 Total Change In Time

Scope: Parameters For

Total Change In Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Use this number and the initial time to compute termination time.

4.9.12 Advance

Scope:
Advance Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

69

Summary Used within a Solver Control block to indicate a single step that advances the solution. The
name is that matches the physics.

4.9.13 Converged When
Scope:

Converged When Convergence-expression

Parameter Value Default
Convergence-expression (expression) undefined
Summary Set the convergence expression.

4.9.14 Event

Scope:
Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined
Summary Used within a Solver Control block to indicate a single step that has no time associated with

it. It can cause a solution transfer between regions or cause something to print.

4.9.15 Initial Deltat
Scope:

Initial Deltat {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign an initial delta T

4.9.16 Involve
Scope:

Involve Name

Parameter Value Default
Name string undefined
Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

70

4.9.17 Number Of Adaptivity Steps
Scope:

Number Of Adaptivity Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The number steps to run the time or nonlinear loop

4.9.18 Number Of Steps
Scope:

Number Of Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The number steps to run the time for nonlinear loop

4.9.19 Output
Scope:

Output Name [When When-exzpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Output line command which execute a perform I/O on the region.

4.9.20 Reinitialize Transient
Scope:

Summary Reset time and re-initialize regions each step of the adaptivity loop.

4.9.21 Simulation Max Global Iterations
Scope:

Simulation Max Global Iterations {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The Total number of Solves.

71

4.9.22 Simulation Start Time
Scope:

Simulation Start Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Simulation starting time. (by default 0.0)

4.9.23 Simulation Termination Time
Scope:

Simulation Termination Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary The drop dead time.

4.9.24 Start Time
Scope:

Start Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign a start time.

4.9.25 Termination Time
Scope:

Termination Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Assign a final time to stop

4.9.26 Time Step Quantum
Scope:

Time Step Quantum {=|are|is} TimeStepQuantum

72

Parameter Value Default
TimeStep Quantum real undefined

Summary Set the time stepping quantum time for SNAP style stepping.

4.9.27 Time Step Style
Scope:

Time Step Style TimeStepStyle. ..

Parameter Value Default
TimeStepStyle {clip|noclip|nosnap|snap} undefined
Summary Set the time stepping style.

When CLIP is specified, the time step size will be clipped at the last step of the transient
loop so that it ends at the transient loop’s end time. If clip is not specified, the last time is
allowed to exceed to the transient loop’s end time and the following transient loop will start
at the exceeded end time.

When SNAP is specified, the time step is broken down into ”quantum” time units. By
default this quantum time is 12 orders of magnitude down from the difference between the
start and end time for the transient loop. This value can be overridden using the TIME STEP
QUANTUM line command. All time values are ”"snapped” to multiples of the quantum time
by rounding to the nearest quantum multiple.

4.9.28 Total Change In Time
Scope:

Total Change In Time {=|are|is} Number

Parameter Value Default
Number real undefined
Summary Use this number and the initial time to compute termination time.

4.9.29 Transfer
Scope:

Transfer Name [When When-ezpression]

Parameter Value Default
Name string undefined
Summary A Solver Control Transfer line command which executes all transfers defined from the specified

region. All transfers with a send region of 'name’ will be executed.

73

4.9.30 Use Initialize
Scope:

Use Initialize Name

Parameter Value Default
Name string undefined
Summary This set the name of which initialization to use.

4.9.31 Use System
Scope:

Use System Name

Parameter Value Default
Name string undefined
Summary This set the name of which system to use.

74

Chapter 5

Transfer Reference

5.1 Overview

Recall that Sierra Mechanics supports application data associated with nodes, elements, faces or edges
of a meshed discretization as in Figure 1.2. The Sierra Transfer utility provides the means by which to
communicate data between two Sierra application Regions. Generally speaking the same type of data is
most often communicated but data movement need not be for the same type, e.g. nodal data can be
communicated to element data and vice-versa.

The Transfer utility is fairly flexible as it provides the ability to move data directly onto another problem
domain either by direct copy or by interpolation. Analysts without prior experience with transfer are often
uncertain as to which type of transfer to use. The two capabilities function exactly as their names imply
but understanding which method to use requires a basic understanding of how each method works.

Copy transfer assumes that the discretization for applications involved in the transfer are identical.
Moreover, copy transfer also assumes that the mesh is identical so that global IDs of nodes and elements
within each mesh are the same. Under these assumptions a geometric search of source to destination locations
is not necessary and a simple algorithm is able to perform the data transfer in a straightforward manner.

Interpolation transfer is much more general than copy transfer since it assumes only that data from
one application must be geometrically mapped for use in another application. A mathematical definition of
this mapping is made possible using the results from a geometric search of points on the destination mesh
and their image on the sending mesh. With regard to code performance copy transfer will always more
efficient than interpolation transfer but is rarely applicable in mainstream simulations. Interpolate transfer
is designed to deal with complications that arise in mapping data from one application to the other and
is more reliable. As a rule, one should always use interpolation transfer and not copy transfer. At the
same time an analyst should strategize model construction so as to offset some of the performance costs of
interpolation transfer.

Even with a basic understanding of transfer users of what transfer operations should be defined. Sev-
eral proper transfer source and destinations are illustrated in Figure 5.1, here the numbers on the figures
correspond to the ExoduslII global IDs of nodes or elements.

Problematic transfer source and destination configurations are illustrated in Figure 5.2. Once again the
numbers on the figures correspond to the ExoduslII global IDs of nodes or elements.

In using the transfer utility one must clearly define the sending region (where the data resides) and
the the receiving region (the data destination). Additionally one must also specify the general geometric
location of data sender and receiver based upon existing mesh entities (blocks or surfaces). Sender and
receiver need not be of same topology but the source and target destinations should overlap geometrically.
Clearly the definition mesh entities influences time spent in the geometric search process and should be a
key consideration in model construction.

The following section outlines the commands to be used in setting up transfer operations. Special

75

2 6 10 14 —_— 2 6 10 14
3 7 11 15 - 5 3 7 11 15
4 8 12 16 NODE 4 8 12 16
COPY
10 1 11 12 7 4] 25 12 17
6 4 9 13 — 2 10 23 8 11
14 8 5 7 —
NODE
3 2 16 15| INTERPOLATE L24 15 9 3 13
4 65 22 | 45 1 8 4
—
—— 2 12 16
34 2 23 16
ELEMENT 3 20 13
INTERPOLATE

Figure 5.1. Valid Transfer Operations

attention should be paid to the syntax of the SEND command line since it differs between COPY and
INTERPOLATION transfer.

Since several different uses of transfer can arise and several of those examples for steady problems are
included below. The same basic setup of transfer would apply to transient problems as well.

A skeleton outline of one-way transfer from Region_1 to Region_2 in a steady-state problem would be:

Begin Sierra
éegin Transfer my_transfer
transfer commands for first_region to second_region
Ena
éegin Procedure My_Aria_Procedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_transfer
Advance second_Region

76

[| L J
1 5 9 13 1 7 10 13
2 6 10 14 ¢2 8 e 144
3 7 11 15
4 8 12 16 NODE .3 9 12 15]
COPY
[| L J [| L J
1 4 7 10 13 5 7 10 13
2 5 8 11 14 2 8 3 4
[9 [9
3 s 9 12 150 NODE b2 14 11 15)
COPY
[2 . [2 .
1 4 7 1 6
[9 [9
2 5 8 2 9

Figure 5.2. Invalid Transfer Operation

End
End
End

Begin Aria Region first_region

eq energy for temperature On block_1 using ql with lumped_mass diff

End

Begin Aria Region second_region

eq energy for temperature On block_1 using ql with xfer

End
End

End Sierra

COPY

77

0] [
ELEMENT

A skeleton outline of two-way transfer between Region_1 to Region_2 in a steady-state problem would
be:

Begin Sierra
Begin Transfer my_first_transfer
transfer commands for first_region to second_region
End
Begin Transfer my_second_transfer
transfer commands for second_region to first_region
End
Begin Procedure My_Aria_Procedure
Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region
transfer my_second_transfer
End
End
End

Begin Aria Region first_region

eq energy for temperature On block_1 using ql with diff
eq species_3 for temperature On block_1 using ql with xfer

End
Begin Aria Region second_region

eq energy for temperature On block_1 using ql with xfer
eq species_3 for species_3 On block_1 using ql with diff

End
End

End Sierra

78

Assume an input mesh for an Input_Output Region 6.1 contains a nodal variable ConvCoeff. In this case
a skeleton outline for one-way transfer of ConvCoeff to to Region_2 in a steady-state problem would be:

Begin Sierra
Begin Transfer my_first_transfer
transfer commands for input_output_region to second_region
SEND field hNd state none TO ConvCoeff state none
End
Begin Procedure My_Aria_Procedure
Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region
End
End
End
Begin Input_Output io_region
USE FINITE ELEMENT MODEL my_input_transfer
End
Begin Aria Region second_region
USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
End
End

End Sierra

5.2 Transfer

Scope: Procedure

Begin Transfer Transfer_name

Abort If Field Not Defined On Copy Transfer Send Or Receive Object
A1l Fields

Copy Optionl Option2 From From_region_name To To_region_name
Distance Function Is Closest Receive Node To Send Centroid

Exclude Ghosted

79

From Optionl To Option2

Gauss Point Integration Order {=|are|is} Order

Interpolate Optionl Option2 From From_region_name To To_region_name
Interpolation Function User_Subroutine

Nodes Outside Region {=|are|is} Option

Search Coordinate Field Source_field_name State Optionl To Destination_field_name
State Option2

Search Geometric Tolerance {=|are|is} Geometric_tolerance

Search Surface Gap Tolerance {=|are|is} Surface_gap_tolerance [Or Less]
Search Type {=|are|is} [Optionl Option2 Option3]

Select One Receiver For Each Send Object

Select One Unique Receiver For Each Send Object

Send Predefined-transfer Fields

Send Block From.blocks... To To_blocks...

Send Field Source_field_name State Optionl To Destination_field_name State Option2
[Lower Bound Lower_bound Upper Bound Upper_bound]

Begin Receive Blocks
End

Begin Send Blocks
End

End

Summary transfer region/mesh information. the mechanics/variables information will get sorted out
by the calling procedure.

5.2.1 Abort If Field Not Defined On Copy Transfer Send Or Receive Object

Scope: Transfer

Summary For testing purposes only. Normally mesh objects in the send or receive mesh which do not
have the specified field defined on them are just ignored. This line command allows the
construction of tests in which it is known that every mesh object should have the specified
field defined on it and to abort if that field is not found.

5.2.2 All Fields
Scope: Transfer

Summary Select all fields for transfer that have same name and state for source and destination regions.

80

5.2.3 Copy

Scope: Transfer

Copy Optionl Option2 From From_region_name To To_region_name

Parameter Value Default

From_region_name string undefined

To_region_name string undefined
Summary Copy transfer elements, nodes or constraints from one region to another. The copy transfer

is very specific in that the sending and receiving mesh parts must have identical global ids for
every element to be copied. The copy transfer works by iterating over all the mesh objects
in the receiving mesh and using the global id of the receiving mesh object to find a mesh
object in the sending mesh with the same global id. The field to transfer is then copied from
the sending to receiving objects. There is no interpolation and the actual coordinates of the
sending and receiving objects are not used and could be very different. The copy transfer is
used in very special cases where the same mesh was read into both the sending and receiving
meshes, there was no element death and there was no adaptivity. In this special case, a copy
transfer can be much faster than an interpolation transfer.

5.2.4 Distance Function Is Closest Receive Node To Send Centroid

Scope: Transfer

Summary To be used in conjunction with "SELECT ONE UNIQUE RECEIVER FOR EACH SEND
OBJECT?”. This helped in the case where the sending and receiving element blocks did not
overlap and an element transfer was using element centroids for the distance computation.
The elements were very distorted so that a centroid of a surface element could be far from the
surface. It was wanted that the receiving element be the one close to the surface of the block
and close to the sending element in the adjacent block. Using the corner nodes was enough
since it was a tet mesh with plane faces. In this particular and unusual case this alternative
method of matching sending and receiving elements was useful, but it is not expected to be
used often or maybe never again.

5.2.5 Exclude Ghosted

Scope: Transfer

Summary exclude ghosted nodes from a copy transfer

5.2.6 From

Scope: Transfer

Summary Allows the send/receive mesh objects to be different.

81

5.2.7 Gauss Point Integration Order

Scope: Transfer

Gauss Point Integration Order {=|are|is} Order

Parameter Value Default
Order integer undefined
Summary Integration order to use when transferring to Gauss points.

5.2.8 Interpolate

Scope: Transfer

Interpolate Optionl Option2 From From_region_name To To_region_name

Parameter Value Default

From_region_name string undefined

To_region_name string undefined
Summary Interpolate will transfer elements, nodes or constraints from one mesh to another. The

interpolation transfer is very general in that the field values to transfer will be interpolated
from the sending to receiving mesh based on the coordinates of the sending and receiving
mesh objects.

Many line commands can be used to modify the behavior of the interpolation transfer but
the basic algorithm is straightforward. Every mesh object in the receiving mesh is converted
into a point. For elements this is the average of the nodal coordinates. An element in the
sending mesh containing this point is found. If the field to transfer is nodal, the element shape
functions are used to interpolate the nodal field to the receiving point. If the field to transfer
is elemental, a bi-linear least squares fit based upon neighboring elements is first performed
and then used to define the interpolation of the element field at the receiving point.

5.2.9 Interpolation Function

Scope: Transfer

Interpolation Function User_Subroutine

Parameter Value Default
User_Subroutine string undefined
Summary Allows an application defined subroutine to be used for the interpolation. Normally the

interpolation transfer will determine the best type of interpolation to use: Basis functions for
nodal fields and a neighborhood least squares fit for element fields. This line command can
be used to override this if needed. It also allows an application to register it’s own special
interpolation functions that can then be used if the special name it was registered with is
known.

5.2.10 Nodes Outside Region

Scope: Transfer

82

Summary This line command defines what to do when a receiving point is outside the scope of the
sending mesh.

IGNORE - The receiving mesh object can be ignored and will receive no value. This is almost
never a good idea as it can cause mesh objects just outside to have a zero value when the
nodes just inside the mesh might have very large values. This can result in a discontinuous
receiving field.

EXTRAPOLATE - This is the default behavior. The sending field is extrapolated beyond
the bounds of the sending mesh. This can lead to extrapolation error, such as when a large
gradient at the surface causes a negative values when only positive values are acceptable. If
this happens to the upper and lower bounds that can be placed on the fields to be transferred
with the SEND FIELD command.

TRUNCATE - The receiving coordinate is projected back to the surface of the sending mesh
to determine a value. This ensures that the receiving value is outside of the field values in
the sending mesh.

PROJECT - This option is similar to TRUNCATE in which the receiving coordinate is
projected back to the surface of the sending mesh to determine a value. In this case more
effort is made to make sure that the projection is normal to the surface in the sending mesh.
Sometimes gives a better result than Truncate but is a little more expensive to compute.

If the PROJECT option is used in transferring of surface values, the sending mesh should
envelope the receiving mesh. Failure to satisfy this condition will generally result in failure
of the transfer.

5.2.11 Search Coordinate Field

Scope: Transfer

Search Coordinate Field Source_field_name State Optionl To Destination_field_name State
Option2

Parameter Value Default

Source_field_name string undefined

Destination_field_name string undefined
Summary Normally the interpolation transfers use the default coordinate field to determine geometry

information. This line command can be used to specify an alternate field.

5.2.12 Search Geometric Tolerance

Scope: Transfer

Search Geometric Tolerance {=|are|is} Geometric_tolerance

Parameter Value Default
Geometric_tolerance real undefined

5.2.13 Search Surface Gap Tolerance

Scope: Transfer

83

Search Surface Gap Tolerance {=|are|is} Surface_gap_tolerance [Or Less]

Parameter Value Default
Surface_gap_tolerance real undefined
Summary This is a tricky parameter best ignored, let it default to some small number. During the

interpolation transfer there is a geometric search based on the coordinates of the send and
receive objects. As part of this search, an axis aligned bounding box is contracted for each
sending object and SEARCH GAP TOLERANCE is used to make this box bigger than just a
tight bounding box. Lists of receiving points are then quickly found within these axis aligned
boxes.

If all points in the receiving mesh are within at least one box, no additional searching needs
to be done and the search algorithm is fast. If there are still points in the receiving mesh
that were outside of EVERY box, then a warning message will be issued about an ”expensive
search for extrapolation” for these points. This ’expensive search” can be very costly if a
large number of receiving objects fall into this category and this line command is provided
for those special cases.

The OR LESS optional parameter is used when the tolerance must be set to large value for
one part of the mesh but much of the mesh needs a much smaller value. In some cases it is
neccessary for the tolerance to be set to the actual largest surface gap tolerance which may
be far too large a gap for the rest of the mesh. Setting OR LESS allows the search tolerance
to be reduced in areas of the mesh thus resulting in a faster search.

5.2.14 Search Type

Scope: Transfer

5.2.15 Select One Receiver For Each Send Object

Scope: Transfer

Summary This option will cause each sending object to be used once and only once. This will have the
side effect of some receiving objects not getting any value at all. If you use this option, you
will also want to set NODES OUTSIDE REGION IGNORE The example which necessitated
this option was a case in which there was a delta function defined on an element in the sending
mesh. It was desirable that the delta functions be summed into the receiving mesh such that
the total value of the sending was conserved. It was better to have only a single element on
the receiving side have a non-zero value that was the sum of sending values and not worry
about how close the receiving element was to the sending element. A check that this option
is working is to use Encore to computer the sum of the values of the sending and receiving
fields to make sure the total sum is the same.

5.2.16 Select One Unique Receiver For Each Send Object

Scope: Transfer

Summary An unusual flag to get around an odd problem. Normally each receive object transfers from
the nearest sending object so it is almost always the case that a send object will be used

84

multiple times to define a receiving value. This option will cause each sending object to be
used only once. This will have the side effect of some receiving objects not getting any value
at all. If you use this option, you will also want to set NODES OUTSIDE REGION IGNORE
or else the uniqueness will be lost for nodes outside the sending region. The example which
necessitated this option was a case in which there was a delta function defined on an element
in the sending mesh. It was desirable that the delta function be defined on the receiving
mesh for only a single element in the neighborhood of the sending element. The analysis was
more sensitive to the number of delta functions on the receiving side than the location. So it
was better to have only a single element on the receiving side have a non-zero value and not
worry about how close the receiving element was to the sending element.

5.2.17 Send

Scope: Transfer

Send Predefined-transfer Fields

Parameter Value Default
Predefined-transfer {} undefined
Summary Use predefine transfer semantics provided by the specified name.

5.2.18 Send Block

Scope: Transfer

Send Block From_blocks... To To_blocks...
Parameter Value Default
From_blocks string. .. undefined
To_blocks string. .. undefined
Summary Add element blocks to a particular same mesh element copy transfer operator.

The copy transfer can have multiple of these lines to define many blocks, but each line sends
a single block to a single block: SEND BLOCK block_1 TO block_-1 SEND BLOCK block_-101
TO block_101

The interpolation transfer can have only a single SEND BLOCK line, but can define many
from/to blocks: SEND BLOCK block_3 block_5 block_6 TO block_3 block_5

5.2.19 Send Field
Scope: Transfer

Send Field Source_field_name State Optionl To Destination_field_name State Option2 [Lower
Bound Lower_bound Upper Bound Upper_bound]

Parameter Value Default
Source_field_name string undefined
Destination_field_name string undefined

85

Summary

Specifies the mapping between source and destination field names. Vector and tensor fields
can be subscripted using parenthesis and 1’s based or brackets and 0 based. Notes on sub-
scripting: (0) Does not work for COPY transfers, only INTERPOLATION type transfers.
(1) If the field name itself actually contains either parenthesis or brackets then we are in
trouble and an error is going to be thrown due to a syntax error in index specification. (2)
Only a single subscript is allowed so vectors of vectors or higher order tensors can not use
double subscripts. But it should be possible to determine the correct offset within the field
and pick out the correct value with a little effort. (3) Once subscripted, only a single value
will be transferred. It is not possible to transfer multiple values starting at a certain index,
instead multiple line commands must be used, as shown above. (4) The indexes can be 0
based with brackets or 1 based when using parenthesis. Although this could be very confusing
if mixed within a single line command. (5) Both the from and to fields can be subscripted
independently on the same line.

example SEND FIELD velocity TO velocity SEND FIELD temp TO temperature lower bound
0 SEND FIELD x TO y lower bound 10 upper bound 100 SEND FIELD A(2) TO B(3) lower
bound 10 upper bound 100 SEND FIELD A[1] TO B[2] lower bound 10 upper bound 100

86

Chapter 6

Input Output Region Reference

6.1 Input_Output Region Overview

For some coupled simulations one can approximate part of the problem physics independent of the entire
problem physics. In order to facilitate this type of loose application coupling the Sierra Framework provides
the ability to input datasets that include the output of other simulations. An application can then make
requests of information from these datasets. In fullfilling these requests, data can be extracted from these
datasets and be copied or interpolated to another problem domain. Moreover these requests can be satisfied
by data interpolated through time. The mechanism provided to achieve this end goal is known as the
Input_Output Region and its usage is described in what follows.

The input_output region works in tandem with transfer 5.1 and solution control 4. Here transfer carries
out the communication of data and solution control provides synchronization of the data transfer. Note that
just like other Sierra Regions the input_output region must have its own Finite Element model command
block defined.

As an example, let us assume that an input mesh for an Input_Output Region contains a nodal variable
ConvCoeff that we wish to use in another Region. In this case an outline for one-way transfer of ConvCoeff
to to a Region, second_region, in a steady-state problem would be:

Begin Sierra
Begin Finite Element Model input_transfer
End
Begin Transfer my_first_transfer
transfer commands for input_output_region to second_region
SEND field hNd state none TO ConvCoeff state none
End
Begin Procedure My_Aria_Procedure
Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock

Advance io_region
transfer my_first_transfer

87

Advance second_Region
End

End
End
Begin Input_Output io_region

USE FINITE ELEMENT MODEL my_input_transfer
End
Begin Aria Region second_region

use Finite Element Model input_transfer

USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
End

End

End Sierra

6.2 Input_Output Region

Scope: Procedure

Begin Input_Output Region Parameter_block_name
Create Element Field Field_name Of Type Option And Dimension Dimension [Value {=
|are|is} Number...]

Create Nodal Field Field name Of Type Option And Dimension Dimension [Value {=|
are|is} Number... 1]

Fixed Time [{=|are|is} Fized_time]

Offset Time {=|are|is} Period_offset_time

Periodicity Time {=|are|is} Periodicity_time

Start Time {=|are|is} Start_time

Use Finite Element Model ModelName [Model Coordinates Are Nodal_variable_name]

Begin Results Output Label
End

End

Summary BEGIN INPUT TRANSFER model name USE FINITE ELEMENT MODEL fred START
TIME is 0 OFFSET TIME is 1 PERIODICITY TIME is 10 END INPUT TRANSFER
model_name

88

6.2.1 Create Element Field
Scope: Input_Output Region

Create Element Field Field_name 0f Type Option And Dimension Dimension [Value {=|are]
is} Number...]

Parameter Value Default

Field_name string undefined

Dimension integer undefined
Summary Creates a Element Field name field_ name on the region.

6.2.2 Create Nodal Field
Scope: Input_Output Region

Create Nodal Field Field_name 0f Type Option And Dimension Dimension [Value {=|are|is}
Number...]

Parameter Value Default

Field_name string undefined

Dimension integer undefined
Summary Creates a Nodal Field name field_name on the region.

6.2.3 Fixed Time
Scope: Input_Output Region

Summary The line specifies that the database will be read for a single, fixed time. Specifying the actual
time is optional. If the time is not specified, the final time plane in the database will be read.

NOTE: This option take precedence over the periodic specifications given by START TIME,
PERIODICITY TIME, and OFFSET TIME.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME is
1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME = last
time in database else if PERIODICITY TIME greater than 0 then if APPLICATION TIME
less than or equal to START TIME then DATABASE TIME = APPLICATION TIME else
DATABASE TIME = START TIME + (APPLICATION TIME - START TIME) modulo
PERIODICITY TIME else DATABASE TIME = APPLICATION TIME now add OFFSET
TIME to the computed DATABASE TIME

6.2.4 Offset Time
Scope: Input_Output Region

Offset Time {=|are|is} Period offset_time

Parameter Value Default
Period_offset_time real undefined

89

Summary This value is added to the application time to determine what database time slice to input. If
OFFSET TIME were 15 than at application time 0 database time slice 15 would be read from
the file and used for the initial values. At application time 1, database time slice 16 would be
read. NOTE: The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used. The FIXED TIME option take precedence over this option.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME is
1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME = last
time in database else if PERIODICITY TIME greater than 0 then if APPLICATION TIME
less than or equal to START TIME then DATABASE TIME = APPLICATION TIME else
DATABASE TIME = START TIME + (APPLICATION TIME - START TIME) modulo
PERIODICITY TIME else DATABASE TIME = APPLICATION TIME now add OFFSET
TIME to the computed DATABASE TIME

6.2.5 Periodicity Time
Scope: Input_Output Region

Periodicity Time {=|are|is} Periodicity_time

Parameter Value Default
Periodicity_time real undefined
Summary START TIME and PERIODICITY TIME taken together give the time frame from the input

database to use to initialize the application values. If START TIME is 25 and PERIODICITY
TIME is 10, then time slices from 25 to 35 will be used over and over again as the application
time runs from 0 to whatever. In general DATABASE TIME is (APPLICATION TIME -
START TIME) modulo PERIODICITY TIME after the application time reaches the START
TIME.

NOTE: The OFFSET TIME is added in after the START TIME and PERIODICITY TIME
are used. The FIXED TIME option take precedence over this option.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME is
1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME = last
time in database else if PERIODICITY TIME greater than 0 then if APPLICATION TIME
less than or equal to START TIME then DATABASE TIME = APPLICATION TIME else
DATABASE TIME = START TIME + (APPLICATION TIME - START TIME) modulo
PERIODICITY TIME else DATABASE TIME = APPLICATION TIME now add OFFSET
TIME to the computed DATABASE TIME

6.2.6 Start Time
Scope: Input_Output Region

Start Time {=|are|is} Start_time

Parameter Value Default
Start_time real undefined
Summary The time in which to start applying PERIODICITY TIME. If PERIODICITY TIME is not

specified then START TIME is ignored.

NOTES: The OFFSET TIME is added in after the START TIME and PERIODICITY TIME
are used. The FIXED TIME option take precedence over this option.

90

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME is
1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME = last
time in database else if PERIODICITY TIME greater than 0 then if APPLICATION TIME
less than or equal to START TIME then DATABASE TIME = APPLICATION TIME else
DATABASE TIME = START TIME + (APPLICATION TIME - START TIME) modulo
PERIODICITY TIME else DATABASE TIME = APPLICATION TIME now add OFFSET
TIME to the computed DATABASE TIME

6.2.7 Use Finite Element Model
Scope: Input_Output Region

Use Finite Element Model ModellName [Model Coordinates Are Nodal_variable_name]

Parameter Value Default
ModelName string undefined
Summary Associates a predefined finite element model with this region.

91

92

Chapter 7

Examples

Sierra application code couplings with Arpeggio can be carried out in a variety of ways. In this chapter a
few simple problems are used to demonstrate some of the coupling approaches.

Here we note that success in performing the coupling hinges upon defining a proper setup for each of the
application codes participating in the coupling. Understandably the coupling becomes more straightforward
if one begins by first setting up each of the independent application code problems (i.e. an application
Region) and later unites the Regions under Arpeggio.

The purpose of the examples is simply to demonstrate the basics of how the problem setup will differ for
various use cases. The examples given here illustrate the use cases most likely to occur:
e One-way coupling of TF with Adagio from file on same mesh 7.1,

e One-way coupling of TF with Adagio from file on different mesh 7.2,

One-way coupling of TF with Adagio on same mesh using transfer 7.3,

e Two-way coupling of TF with Adagio on same mesh 7.4,

One way coupling of TF with another TF, same mesh 7.6,

One way coupling of TF with Presto on same mesh with subcycling 7.5,

7.1 One-Way Coupling From File

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be accomplished
simply by supplying a secondary physics solution to the primary physics simulation. In the context of problem
solutions one would first solve the secondary physics problem and then communicate the solution to a primary
physics simulation. Perhaps the easiest way to carry out such a simulation is to supply the secondary physics
solution to the primary physics via file. The following example describes the process as it might be carried
out in Arpeggio.

7.1.1 Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Although the problem geometry is changing due to the
structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in the
body. For each time step, a heat conduction problem was solved for the temperature distribution using the
Aria code and the results were written to file. The Aria output file is then used as the input file for Adagio

93

where the temperatures are read into Adagio. Adagio subsequently solves for mechanical equilibrium which
includes calculation of thermal strains due to changing temperatures.

Here we note that the thermal solution file time planes need not correspond to the Adagio time planes
as the thermal solution will be interpolated in time to match the Adagio solution time. Furthermore, in this
problem, an Aria results file is the Adagio input discretization so the problems correspond to the same mesh.
Here it is important that the input Aria discretization contain the nodesets and sidesets needed to carry
out the Adagio simulation. Problems in which one might wish to solve the Adagio problem on a different
discretization can also be dealt with but in a slightly different manner.

7.1.2 Input File

7.2 One-Way Coupling Using Transfer From Different Mesh

In some coupled physics one of the physics (primary) is dependent upon the other physics (secondary) but
not, vice-versa. In this case the coupling is considered to be one-way and can be accomplished simply by
supplying a secondary physics solution to the primary physics simulation. In the context of problem solutions
one would first solve the secondary physics problem and then communicate the solution to a primary physics
simulation. As previously demonstrated one way to carry out such a simulation is to supply the secondary
physics solution to the primary physics via file 7.1. However, in some cases the secondary physics solution is
available on a vastly different geometry. In this case the secondary physics solution must be interpolated onto
the primary physics as needed. In Sierra Mechanics the communication step of such an analysis is carried out
using Solution Control and Transfer operations. Here Transfer describes the information and Solution
Control ensures sequencing of information to the primary physics. The following example describes the
solution process to perform a coupled analysis using a precomputed thermal solution and Adagio.

7.2.1 Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to the
structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in the
body. For this situation a reasonable approach may be to precompute the heat transfer solution and then
supply it to the mechanical simulation. Here a transient heat conduction problem on a full geometry was
solved for the temperature distribution using the Aria code and the results were saved to file. Later on the
previously computed temperature distribution was supplied to Adagio for solution of mechanical equilibrium
which includes calculation of thermal strains due to changing temperatures. In this particular case the
Adagio problem could be solved by invoking symmetry conditions so the model geometry is a subset of the
thermal model geometry.

In this particular case the Adagio problem could be solved by invoking symmetry conditions so the
model geometry is a subset of the thermal model geometry. During the simulation the transient thermal
solution is read from file these results are then communicated to Adagio using a transfer operation. Once the
Aria values are received by Adagio the structural problem is then solved. Since the thermal and structural
model geometries are different, it is necessary to use the transfer INTERPOLATE operation. Note that
the problem advances with the two applications lock stepped in time with the thermal solution is being
interpolated in both space and time.

94

7.2.2 Input File

7.3 One-Way Coupling Using Transfer

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be accomplished
simply by supplying a secondary physics solution to the primary physics simulation. In the context of problem
solutions one would first solve the secondary physics problem and then communicate the solution to a primary
physics simulation. One way to carry out such a simulation is to supply the secondary physics solution to the
primary physics via file 7.1. However, in many instances it is more convenient to carry out both simulations
simultaneously and directly communicate the secondary physics solution to the primary physics as needed.
In Sierra Mechanics the communication step of such an analysis is carried out using Solution Control and
Transfer operations. Here Transfer describes the information and Solution Control ensures sequencing
of information to the primary physics. The following example describes the solution process to perform a
coupled analysis using Aria and Adagio.

7.3.1 Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to the
structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in the
body. For each time step, a heat conduction problem was solved for the temperature distribution using
the Aria code. Once the thermal solution has been obtained the temperature solution is communicated to
Adagio via Transfer and Adagio then solves for mechanical equilibrium which includes calculation of thermal
strains due to changing temperatures.

Note that the problem advances with the two applications lock stepped in time. In this problem the Aria
input discretization is identical to that of Adagio. During the simulation an Aria solution is performed and
Aria results are then communicated to Adagio using a transfer COPY operation. Once the Aria values are
received by Adagio the structural problem is then solved. Problems in which one might wish to solve the
Aria and Adagio problems on different discretizations can dealt with by making simple modifications to the
input replacing the transfer COPY operation with a INTERPOLATE operation.

7.3.2 Input File
7.4 Two-Way Coupling With Transfer

7.4.1 Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The test
problem is shown schematically in Figure. Although the problem is one-dimensional we solve the problem
in a three-dimensional setting. Once the diffusion problem has been solved numerically the temperature
result is postprocessed to obtain a comparison with the analytical result and the distribution of diffusive
heat flux. This test input also demonstrates the use tabular function and Encore function material property
specification in Aria.

95

7.4.2 Input File
7.5 estack Regression Test

7.5.1 Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The test
problem is shown schematically in Figure. Although the problem is one-dimensional we solve the problem
in a three-dimensional setting. Once the diffusion problem has been solved numerically the temperature
result is postprocessed to obtain a comparison with the analytical result and the distribution of diffusive
heat flux. This test input also demonstrates the use tabular function and Encore function material property
specification in Aria.

7.5.2 Input File
7.6 tv Regression Test

7.6.1 Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The test
problem is shown schematically in Figure. Although the problem is one-dimensional we solve the problem
in a three-dimensional setting. Once the diffusion problem has been solved numerically the temperature
result is postprocessed to obtain a comparison with the analytical result and the distribution of diffusive
heat flux. This test input also demonstrates the use tabular function and Encore function material property
specification in Aria.

7.6.2 Input File

96

References

[1] Gerald W. Wellman. Mapvar: a computer program to transfer solution data between finite element
meshes. SAND 1999-0466, Sandia National Laboratories, Albuquerque, NM, USA, March 1999. 1.1

[2] The SNTools Project. SNTools SourceForge Project. Online. 2.3

97

http://sourceforge-web.sandia.gov/projects/sntools/

98

Index

A
Abort If Field Not Defined On Copy Transfer Send Or Receive
Object, 79, 80
Abscissa, 34, 35
Abscissa Offset, 34, 35
Abscissa Scale, 34, 36
Adapt, 48, 49, 52, 53, 55, 56, 59, 62
Adaptivity, 48, 52, 62
Advance, 52, 53, 55, 56, 59, 62, 63, 65, 69
Alias, 26, 27
All Fields, 79, 80
At Discontinuity Evaluate To, 34, 36

B

barOneWayCoupleDifferentMesh

Statement, 94
barOneWayCoupleFromDifferent Mesh

Input, 95
barOneWayCoupleFromFile

Input, 94

Statement, 93
barOneWayCoupleTransfer

Input, 95

Statement, 95

C
Column Titles, 34, 36
Component Separator Character, 26, 27
Compute Indicator On, 48, 49, 52, 53, 55, 56, 59, 60, 62, 63
Converged When, 66, 67, 70
Coordinate System, 26, 28
Copy, 79, 81
Create, 26, 28
Create Element Field, 88, 89
Create Nodal Field, 88, 89

Data File, 34, 36

Database Name, 26, 28

Database Type, 26, 28

Debug, 34, 37

Decomposition Method, 26, 29

Definition For Function, 34

Differentiate Expression, 35, 37

Distance Function Is Closest Receive Node To Send Centroid,
79, 81

estack
Input, 96
Statement, 96
Evaluate Expression, 35, 37
Evaluate From, 35, 39
Event, 48, 49, 52, 53, 55, 57, 59, 60, 62, 63, 65, 66, 70
Exclude Ghosted, 79, 81
Execute Postprocessor Group, 48, 50, 52, 54, 55, 57, 59, 60,
62, 63
Expression Variable:, 35, 39
Expressions, 35

99

F
Finite Element Model, 26
Fixed Time, 88, 89
From, 80, 81
G
gapClosure
Input, 96

Statement, 95
Gauss Point Integration Order, 80, 82
Global Constants, 32
Global Id Mapping Backward Compatibility, 26, 29
Gravity Vector, 32, 33

Ideal Gas Constant, 32, 33

Include All Blocks, 30, 31

Incremental Number Of Steps, 66, 67
Indicatemarkadapt, 48, 50, 52, 54, 55, 57, 59, 60, 62, 64
Initial Deltat, 66, 67, 70

Initialize, 47, 65

Input_Output Region, 88

Interpolate, 80, 82

Interpolation Function, 80, 82

Involve, 52, 54, 56, 57, 59, 61, 62, 64-66, 70

K
K-E Turbulence Model Parameter, 32, 33
K-W Turbulence Model Parameter, 32, 33

L
Les Turbulence Model Parameter, 32, 34
Local Coordinate System, 30, 31

M
Mark, 48, 50, 52, 54, 56, 58, 59, 61, 62, 64
Markadapt, 48, 50, 52, 55, 56, 58, 59, 61, 62, 64
Material, 31
Material =, 31

N
Nodes Outside Region, 80, 82
Nonlinear, 52, 55, 62
Number Of Adaptivity Steps, 66, 68, 71
Number Of Steps, 66, 68, 71

(0]
Offset Time, 88, 89
Omit Block, 26, 29
Omit Volume, 26, 29
Ordinate, 35, 40
Ordinate Offset, 35, 40
Ordinate Scale, 35, 40
Output, 48, 51, 52, 55, 56, 58, 59, 61, 62, 65, 71

P
Parameters For, 47, 66
Parameters For Aria Region, 67
Parameters For Block, 27, 30
Parameters For Phase, 27

Parameters For Surface, 27
Periodicity Time, 88, 90
Phase, 31, 32

R
Receive Blocks, 80
Reinitialize Transient, 67, 68, 71
Remove Block, 31, 32
Restart Time, 42
Results Output, 88

S
Scale By, 35, 40
Search Coordinate Field, 80, 83
Search Geometric Tolerance, 80, 83
Search Surface Gap Tolerance, 80, 83
Search Type, 80, 84
Select One Receiver For Each Send Object, 80, 84
Select One Unique Receiver For Each Send Object, 80, 84
Send, 80, 85
Send Block, 80, 85
Send Blocks, 80
Send Field, 80, 85
Sequential, 48, 62
Simulation Max Global Iterations, 48, 51, 71
Simulation Start Time, 48, 51, 72
Simulation Termination Time, 48, 51, 72
Solution Control Description, 47
Start Time, 67, 68, 72, 88, 90
Stefan Boltzmann Constant, 32, 34
Subcycle, 52, 56, 59
System, 48

T
Termination Time, 67, 68, 72
Time Scale Factor, 26, 30
Time Step Quantum, 67, 69, 72
Time Step Style, 67, 69, 73
Total Change In Time, 67, 69, 73
Transfer, 48, 51, 52, 55, 56, 58, 59, 61, 62, 65, 66, 73, 79
Transient, 48, 52
Turbulence Model, 32, 34

tv
Input, 96
Statement, 96
Type, 35, 40

U
Use Finite Element Model, 88, 91
Use Generic Names, 27, 30
Use Initialize, 48, 52, 74
Use Material, 27, 30
Use System, 47, 48, 74

A%
Values, 35, 41, 42

X
X Offset, 35, 41
X Scale, 35, 41

Y

Y Offset, 35, 41
Y Scale, 35, 41

100

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

101

102

v1.38

103

@ Sandia National Laboratories

	Contents
	List of Figures
	1 Introduction
	1.1 Coupled Physics Approaches
	1.2 Sierra Mechanics Coupling
	1.3 Communication of Data (Transfer Services)
	1.4 Solution Control
	1.4.1 Region Initialization
	1.4.2 Solution
	1.4.3 Time Stepping
	1.4.4 Conditional Events

	1.5 Coupling Strategies
	1.6 Coupling with Arpeggio
	1.6.1 Coupling Including Element Death

	1.7 Outline of the Manual

	2 Getting Started
	2.1 Setting The Environment-Users External to Sandia Labs
	2.2 Setting The Environment-Users at Sandia Labs
	2.3 Running Arpeggio
	2.4 Arpeggio Environment Overview
	2.5 Overview of the Input File Structure
	2.5.1 Syntax Conventions for Commands
	Keywords
	Names
	Parameters
	Multiple Parameters
	Enumerated Parameters
	Delimiters
	White Space
	Indentation
	Case Sensitivity
	Comments and Line Continuation
	Checking the Syntax

	2.6 Fields
	2.7 User Fields

	3 Model Definition
	3.1 Model Overview
	3.2 Finite Element Model
	3.2.1 Alias
	3.2.2 Component Separator Character
	3.2.3 Create
	3.2.4 Coordinate System
	3.2.5 Database Name
	3.2.6 Database Type
	3.2.7 Decomposition Method
	3.2.8 Global Id Mapping Backward Compatibility
	3.2.9 Omit Block
	3.2.10 Omit Volume
	3.2.11 Time Scale Factor
	3.2.12 Use Generic Names
	3.2.13 Use Material

	3.3 Parameters For Block
	3.3.1 Include All Blocks
	3.3.2 Local Coordinate System
	3.3.3 Material
	3.3.4 Material =
	3.3.5 Phase
	3.3.6 Remove Block

	3.4 Global Constants
	3.4.1 Gravity Vector
	3.4.2 Ideal Gas Constant
	3.4.3 K-E Turbulence Model Parameter
	3.4.4 K-W Turbulence Model Parameter
	3.4.5 Les Turbulence Model Parameter
	3.4.6 Stefan Boltzmann Constant
	3.4.7 Turbulence Model

	3.5 Definition For Function
	3.5.1 Abscissa
	3.5.2 Abscissa Offset
	3.5.3 Abscissa Scale
	3.5.4 At Discontinuity Evaluate To
	3.5.5 Column Titles
	3.5.6 Data File
	3.5.7 Debug
	3.5.8 Differentiate Expression
	3.5.9 Evaluate Expression
	3.5.10 Evaluate From
	3.5.11 Expression Variable:
	3.5.12 Expression Variable:
	3.5.13 Ordinate
	3.5.14 Ordinate Offset
	3.5.15 Ordinate Scale
	3.5.16 Scale By
	3.5.17 Type
	3.5.18 X Offset
	3.5.19 X Scale
	3.5.20 Y Offset
	3.5.21 Y Scale

	3.6 Values
	3.6.1

	3.7 Restart Overview
	3.7.1 Restart Time

	4 Solution Control Reference
	4.1 Overview
	4.2 Solution Control Description
	4.2.1 Use System

	4.3 System
	4.3.1 Adapt
	4.3.2 Compute Indicator On
	4.3.3 Event
	4.3.4 Execute Postprocessor Group
	4.3.5 Indicatemarkadapt
	4.3.6 Mark
	4.3.7 Markadapt
	4.3.8 Output
	4.3.9 Simulation Max Global Iterations
	4.3.10 Simulation Start Time
	4.3.11 Simulation Termination Time
	4.3.12 Transfer
	4.3.13 Use Initialize

	4.4 Transient
	4.4.1 Adapt
	4.4.2 Advance
	4.4.3 Compute Indicator On
	4.4.4 Event
	4.4.5 Execute Postprocessor Group
	4.4.6 Indicatemarkadapt
	4.4.7 Involve
	4.4.8 Mark
	4.4.9 Markadapt
	4.4.10 Output
	4.4.11 Transfer

	4.5 Nonlinear
	4.5.1 Adapt
	4.5.2 Advance
	4.5.3 Compute Indicator On
	4.5.4 Event
	4.5.5 Execute Postprocessor Group
	4.5.6 Indicatemarkadapt
	4.5.7 Involve
	4.5.8 Mark
	4.5.9 Markadapt
	4.5.10 Output
	4.5.11 Transfer

	4.6 Subcycle
	4.6.1 Adapt
	4.6.2 Advance
	4.6.3 Compute Indicator On
	4.6.4 Event
	4.6.5 Execute Postprocessor Group
	4.6.6 Indicatemarkadapt
	4.6.7 Involve
	4.6.8 Mark
	4.6.9 Markadapt
	4.6.10 Output
	4.6.11 Transfer

	4.7 Sequential
	4.7.1 Adapt
	4.7.2 Advance
	4.7.3 Compute Indicator On
	4.7.4 Event
	4.7.5 Execute Postprocessor Group
	4.7.6 Indicatemarkadapt
	4.7.7 Involve
	4.7.8 Mark
	4.7.9 Markadapt
	4.7.10 Output
	4.7.11 Transfer

	4.8 Initialize
	4.8.1 Advance
	4.8.2 Event
	4.8.3 Involve
	4.8.4 Transfer

	4.9 Parameters For
	4.9.1 Converged When
	4.9.2 Incremental Number Of Steps
	4.9.3 Initial Deltat
	4.9.4 Number Of Adaptivity Steps
	4.9.5 Number Of Steps
	4.9.6 Reinitialize Transient
	4.9.7 Start Time
	4.9.8 Termination Time
	4.9.9 Time Step Quantum
	4.9.10 Time Step Style
	4.9.11 Total Change In Time
	4.9.12 Advance
	4.9.13 Converged When
	4.9.14 Event
	4.9.15 Initial Deltat
	4.9.16 Involve
	4.9.17 Number Of Adaptivity Steps
	4.9.18 Number Of Steps
	4.9.19 Output
	4.9.20 Reinitialize Transient
	4.9.21 Simulation Max Global Iterations
	4.9.22 Simulation Start Time
	4.9.23 Simulation Termination Time
	4.9.24 Start Time
	4.9.25 Termination Time
	4.9.26 Time Step Quantum
	4.9.27 Time Step Style
	4.9.28 Total Change In Time
	4.9.29 Transfer
	4.9.30 Use Initialize
	4.9.31 Use System

	5 Transfer Reference
	5.1 Overview
	5.2 Transfer
	5.2.1 Abort If Field Not Defined On Copy Transfer Send Or Receive Object
	5.2.2 All Fields
	5.2.3 Copy
	5.2.4 Distance Function Is Closest Receive Node To Send Centroid
	5.2.5 Exclude Ghosted
	5.2.6 From
	5.2.7 Gauss Point Integration Order
	5.2.8 Interpolate
	5.2.9 Interpolation Function
	5.2.10 Nodes Outside Region
	5.2.11 Search Coordinate Field
	5.2.12 Search Geometric Tolerance
	5.2.13 Search Surface Gap Tolerance
	5.2.14 Search Type
	5.2.15 Select One Receiver For Each Send Object
	5.2.16 Select One Unique Receiver For Each Send Object
	5.2.17 Send
	5.2.18 Send Block
	5.2.19 Send Field

	6 Input Output Region Reference
	6.1 Input_Output Region Overview
	6.2 Input_Output Region
	6.2.1 Create Element Field
	6.2.2 Create Nodal Field
	6.2.3 Fixed Time
	6.2.4 Offset Time
	6.2.5 Periodicity Time
	6.2.6 Start Time
	6.2.7 Use Finite Element Model

	7 Examples
	7.1 One-Way Coupling From File
	7.1.1 Problem Statement
	7.1.2 Input File

	7.2 One-Way Coupling Using Transfer From Different Mesh
	7.2.1 Problem Statement
	7.2.2 Input File

	7.3 One-Way Coupling Using Transfer
	7.3.1 Problem Statement
	7.3.2 Input File

	7.4 Two-Way Coupling With Transfer
	7.4.1 Problem Statement
	7.4.2 Input File

	7.5 estack Regression Test
	7.5.1 Problem Statement
	7.5.2 Input File

	7.6 tv Regression Test
	7.6.1 Problem Statement
	7.6.2 Input File

	References
	Index

